This is default featured slide 1 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 2 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 3 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 4 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 5 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

Senin, 13 September 2010

KEMAGNETAN

Pada era teknologi yang serba modern ini magnet memegang peranan yang sangat penting. Dari pengembangan sains, telah berhasil membuat alat transportasi yang menggunakan magnet yang disebut kereta api monorel. Berbagai alat menggunakan magnet seperti alat-alat rumah tangga dan alat-alat komunikasi. Apakah sebenarnya magnet itu? Bagaimanakah prinsip kerja alat-alat itu berdasarkan kemagnetan?

KEMAGNETAN BAHAN

Kita dapat menggolongkan benda berdasarkan sifatnya. Pernahkah kamu melihat benda yang dapat menarik benda logam lain? Kemampuan suatu benda menarik benda lain yang berada di dekatnya disebut kemagnetan. Berdasarkan kemampuan benda menarik benda lain dibedakan menjadi dua, yaitu benda magnet dan benda bukan magnet. Namun, tidak semua benda yang berada di dekat magnet dapat ditarik. Benda yang dapat ditarik magnet disebut benda magnetik. Benda yang tidak dapat ditarik magnet disebut benda nonmagnetik.

Benda yang dapat ditarik magnet ada yang dapat ditarik kuat, dan ada yang ditarik secara lemah. Oleh karena itu, benda dikelompokkan menjadi tiga, yaitu benda feromagnetik, benda paramagnetik, dan benda diamagnetik. Benda yang ditarik kuat oleh magnet disebut benda feromagnetik. Contohnya besi, baja, nikel, dan kobalt. Benda yang ditarik lemah oleh magnet disebut benda paramagnetik. Contohnya platina, tembaga, dan garam. Benda yang ditolak oleh magnet dengan lemah disebut benda diamagnetik. Contohnya timah, aluminium, emas, dan bismuth.

Benda-benda magnetik yang bukan magnet dapat dijadikan magnet. Benda itu ada yang mudah dan ada yang sulit dijadikan magnet. Baja sulit untuk dibuat magnet, tetapi setelah menjadi magnet sifat kemagnetannya tidak mudah hilang. Oleh karena itu, baja digunakan untuk membuat magnet tetap (magnet permanen). Besi mudah untuk dibuat magnet, tetapi jika setelah menjadi magnet sifat kemagnetannya mudah hilang. Oleh karena itu, besi

gb11121121

digunakan untuk membuat magnet sementara. Setiap benda magnetik pada dasarnya terdiri magnet-magnet kecil yang disebut magnet elementer. Cobalah mengingat kembali teori partikel zat di kelas VII. rinsip membuat magnet adalah mengubah susunan magnet elementer yang tidak beraturan menjadi searah dan teratur. Ada tiga cara membuat magnet, yaitu menggosok, induksi, dan arus listrik.

1. Membuat Magnet dengan Cara Menggosok

1131

Besi yang semula tidak bersifat magnet, dapat dijadikan magnet. Caranya besi digosok dengan salah satu ujung magnet tetap. Arah gosokan dibuat searah agar magnet elementer yang terdapat pada besi letaknya menjadi teratur dan mengarah ke satu arah.

2. Membuat Magnet dengan Cara Induksi

1141

Besi dan baja dapat dijadikan magnet dengan cara induksi magnet. Besi dan baja diletakkan di dekat magnet tetap. Magnet elementer yang terdapat pada besi dan baja akan terpengaruh atau terinduksi magnet tetap yang menyebabkan letaknya teratur dan mengarah ke satu arah. Besi atau baja akan menjadi magnet sehingga dapat menarik serbuk besi yang berada di dekatnya.

Ujung besi yang berdekatan dengan kutub magnet batang, akan terbentuk kutub yang selalu berlawanan dengan kutub magnet penginduksi. Apabila kutub utara magnet batang berdekatan dengan ujung A besi, maka ujung A besi menjadi kutub selatan dan ujung B besi menjadi kutub utara atau sebaliknya.

3. Membuat Magnet dengan Cara Arus Listrik

1162_

Selain dengan cara induksi, besi dan baja dapat dijadikan magnet dengan arus listrik. Besi dan baja dililiti kawat yang dihu- bungkan dengan baterai. Magnet elementer yang terdapat pada besi dan baja akan terpengaruh aliran arus searah (DC) yang dihasilkan baterai. Hal ini menyebabkan magnet elementer letaknya teratur dan mengarah ke satu arah. Besi atau baja akan menjadi magnet dan dapat menarik serbuk besi yang berada di dekatnya. Magnet yang demikian disebut magnet listrik atau elektromagnet.

Besi yang berujung A dan B dililiti kawat berarus listrik. Kutub magnet yang terbentuk bergantung pada arah arus ujung kumparan. Jika arah arus berlawanan jarum jam maka ujung besi tersebut menjadi kutub utara. Sebaliknya, jika arah arus searah putaran jarum jam maka ujung besi tersebut terbentuk kutub selatan. Dengan demikian, ujung A kutub utara dan B kutub selatan atau sebaliknya.

Setelah kita dapat membuat magnet tentu saja ingin menyimpannya. Agar sifat kemagnetan sebuah magnet dapat tahan lama, maka dalam menyimpan magnet diperlukan angker (sepotong besi) yang dipasang pada kutub magnet. Pemasangan angker bertu- juan untuk mengarahkan magnet elementer hingga membentuk rantai tertutup. Untuk menyimpan dua buah magnet batang diperlukan dua angker yang dihubungkan dengan dua kutub magnet yang berlawanan. Jika berupa magnet U untuk menyimpan diperlukan satu angker yang dihubungkan pada kedua kutubnya.

117

Kita sudah mengetahui benda magnetik dapat dijadikan magnet. Sebaliknya magnet juga dapat dihilangkan kemagnetannya. Bagaimana caranya? Sebuah magnet akan hilang sifat kemagnetannya jika magnet dipanaskan, dipukul-pukul, dan dialiri arus listrik bolak-balik. Magnet yang mengalami pemanasan dan pemukulan akan menyebabkan perubahan susunan magnet elementernya. Akibat pemanasan dan pemukulan magnet elementer menjadi tidak teratur dan tidak searah. Penggunaan arus AC menyebabkan arah arus listrik yang selalu berubah-ubah. Perubahan arah arus listrik memengaruhi letak dan arah magnet elementer. Apabila letak dan arah magnet elementer berubah, sifat kemagnetannya hilang.

118

Latihan !

1. Apakah yang terjadi pada besi dan baja apabila arah gosokan ujung magnet tetap arahnya bolak-balik ?

2. Mengapa jika kaca digosok dengan magnet tetap, berapapun lamanya gosokan kaca tidak dapat menjadi magnet?

3. Mengapa magnet yang dibakar akan hilang sifat kemagnetannya?

KUTUB MAGNET

1191

Di awal bab ini kamu sudah mengenal istilah kutub magnet. Selanjutnya di bagian ini kamu akan lebih memperdalam sifat-sifat kutub magnet. Jika magnet batang ditaburi serbuk besi atau paku- paku kecil, sebagian besar serbuk besi maupun paku akan melekat pada kedua ujung magnet. Bagian kedua ujung magnet akan lebih banyak serbuk besi atau paku yang menempel daripada di bagian tengahnya. Hal itu menunjukkan bahwa gaya tarik magnet paling kuat terletak pada ujung-ujungnya. Ujung magnet yang memiliki gaya tarik paling kuat itulah yang disebut kutub magnet. Bagai- manakah menentukan jenis kutub magnet? Sebuah magnet batang yang tergantung bebas dalam keadaan setimbang, ujung-ujungnya akan menunjuk arah utara dan arah selatan bumi. Ujung magnet yang menunjuk arah utara bumi disebut kutub utara magnet. Sebaliknya, ujung magnet yang menunjuk arah selatan bumi disebut kutub selatan magnet.

1110

Setiap magnet memiliki dua kutub, yaitu kutub utara dan kutub selatan. Alat yang digunakan untuk menunjukkan arah utara bumi atau geografis disebut kompas. Kompas merupakan magnet jarum yang dapat bergerak bebas pada sebuah poros. Pada keadaan setimbang salah satu ujung magnet jarum menunjuk arah utara dan ujung lainnya menunjuk arah selatan. Kamu sudah mengetahui bahwa magnet mempunyai dua kutub, yaitu kutub utara dan kutub selatan. Apabila dua kutub magnet didekatkan akan saling mengadakan interaksi. Jenis interaksi bergantung jenis-jenis kutub yang berdekatan. Apakah yang terjadi jika kutub utara sebuah magnet didekatkan dengan kutub utara magnet lain? Atau sebaliknya, apakah yang terjadi jika kutub utara sebuah magnet didekatkan dengan kutub selatan magnet lain?

Untuk mengetahui interaksi antarkutub dua magnet, cobalah melakukan kegiatan berikut secara berkelompok. Sebelumnya, bentuklah satu kelompok yang terdiri 4 siswa; 2 laki-laki dan 2 perempuan.

Tujuan: Mengetahui interaksi antarkutub

Alat dan Bahan:

- Magnet batang alnico

- Benang

- Spidol

- Statif

- benang

- magnet

- magnet kertas

Cara Kerja:

1. Ikatlah sebuah magnet batang di tengah-tengahnya dan gantungkan pada statif.

2. Setelah dalam keadaan seimbang, dekati kutub magnet dengan kutub sejenis magnet yang lain.

pcb1

3. Amatilah keadaan magnet.

4. Ulangi cara kerja nomor 2-3, tetapi menggunakan kutub magnet yang berlawanan jenis.

Pertanyaan:

1. Apa yang terjadi jika dua kutub sejenis berinteraksi atau berdekatan?

2. Apa yang terjadi jika dua kutub berlawanan jenis berinteraksi?

3. Nyatakan kesimpulan kelompokmu di buku kerjamu.

Kamu sudah melakukan kegiatan berupa menginteraksikan dua magnet; jika kutubnya senama akan saling menolak tetapi jika kutubnya berbeda akan saling menarik. Pada saat dua magnet terpisah jarak yang jauh, belum terasa adanya gaya tarik atau gaya tolak. Makin dekat kedua magnet, makin terasa kuat gaya tarik atau gaya tolaknya.

Jika di sekitar magnet batang diletakkan benda-benda mag- netik, benda-benda itu akan ditarik oleh magnet. Makin dekat dengan magnet, gaya tarik yang dialami benda makin kuat. Makin jauh dari magnet makin kecil gaya tarik yang dialami benda. Ruang di sekitar magnet yang masih terdapat pengaruh gaya tarik magnet disebut medan magnet. Pada tempat tertentu benda tidak mendapat penga- ruh gaya tarik magnet. Benda yang demikian dikatakan berada di luar medan magnet. Medan magnet tidak dapat dilihat dengan mata.

1111

Namun, keberadaan dan polanya dapat ditunjukkan. Garis-garis yang menggambarkan pola medan magnet di- sebut garis-garis gaya magnet. Garis-garis gaya magnet tidak pernah berpotongan satu sama lainnya. Garis-garis gaya magnet keluar dari kutub utara, masuk (menuju) ke kutub selatan. Makin banyak jumlah garis-garis gaya magnet makin besar kuat medan magnet yang dihasilkan. Apapun bentuknya sebuah magnet memiliki medan magnet yang digambar berupa garis lengkung.

Dua kutub magnet yang tidak sejenis saling berdekatan pola medan magnetnya juga berupa garis lengkung yang keluar dari kutub utara magnet menuju kutub selatan magnet. Bagaimanakah kerapatan pola medan magnet dua kutub magnet yang makin berdekatan?

Pada dua kutub magnet yang tak sejenis, garis-garis gaya magnetnya keluar dari kutub utara dan masuk ke kutub selatan magnet lain. Itulah sebabnya dua kutub magnet yang tidak sejenis saling tarik-menarik.

Pada dua kutub magnet yang sejenis, garis-garis gaya magnet yang keluar dari kutub utara masing-masing cenderung saling menolak. Mengapa? Karena arah garis gaya berlawanan, terjadilah tolak-menolak antara garis-garis gaya yang keluar kedua kutub utara magnet. Hal itulah yang menyebabkan dua kutub yang sejenis saling menolak.

1112

Latihan

1. Apakah perbedaan antara kutub utara dan kutub selatan sebuah magnet?

2. Sebutkan dua sifat-sifat kutub magnet yang saling berdekatan.

3. Apakah yang dimaksud medan magnet?

4. Bagaimanakah pengaruh jumlah garis gaya magnet terhadap kekuatan magnet?

KEMAGNETAN BUMI

1. Bumi Sebagai Magnet

Kamu sudah mengetahui sebuah magnet batang yang tergantung bebas akan menunjuk arah tertentu. Pada bagian ini, kamu akan mengetahui mengapa magnet bersikap seperti itu. Pada umumnya sebuah magnet terbuat dari bahan besi dan nikel. Keduanya memiliki sifat kemagnetan karena tersusun oleh magnet- magnet elementer. Batuan-batuan pembentuk bumi juga mengan- dung magnet elementer. Bumi dipandang sebagai sebuah magnet batang yang besar yang membujur dari utara ke selatan bumi. Mag- net bumi memiliki dua kutub, yaitu kutub utara dan selatan. Kutub utara magnet bumi terletak di sekitar kutub selatan bumi. Adapun kutub selatan magnet bumi terletak di sekitar kutub utara bumi.

1114

Magnet bumi memiliki medan magnet yang dapat memengaruhi jarum kompas dan magnet batang yang tergantung bebas. Medan magnet bumi digambarkan dengan garis-garis leng- kung yang berasal dari kutub selatan bumi menuju kutub utara bumi. Magnet bumi tidak tepat menunjuk arah utara-selatan geografis. Penyimpangan magnet bumi ini akan menghasilkan garis-garis gaya magnet bumi yang menyimpang terhadap arah utara-selatan geografis. Adakah pengaruh penyimpangan magnet bumi terhadap jarum kompas?

2. Deklinasi dan Inklinasi

Ambillah sebuah kompas dan letakkan di atas meja dengan penunjuk utara (N) tepat menunjuk arah utara. Amatilah kutub utara jarum kompas. Apakah kutub utara jarum kompas tepat menunjuk arah utara (N)? Berapakah sudut yang dibentuk antara kutub utara jarum kompas dengan arah utara (N)?

1116

Jika kita perhatikan kutub utara jarum kompas dalam keadaan setimbang tidak tepat menunjuk arah utara dengan tepat. Penyim- pangan jarum kompas itu terjadi karena letak kutub-kutub magnet bumi tidak tepat berada di kutub-kutub bumi, tetapi menyimpang terhadap letak kutub bumi. Hal ini menyebabkan garis-garis gaya magnet bumi mengalami penyimpangan terhadap arah utara-selatan bumi. Akibatnya penyimpangan kutub utara jarum kompas akan membentuk sudut terhadap arah utara-selatan bumi (geografis). Sudut yang dibentuk oleh kutub utara jarum kompas dengan arah utara-selatan geografis disebut deklinasi (Gambar 11.15). Pernahkah kamu memerhatikan mengapa kedudukan jarum kompas tidak mendatar. Penyimpangan jarum kompas itu terjadi ka- rena garis-garis gaya magnet bumi tidak sejajar dengan permukaan bumi (bidang horizontal). Akibatnya, kutub utara jarum kompas me- nyimpang naik atau turun terhadap permukaan bumi. Penyimpangan kutub utara jarum kompas akan membentuk sudut terhadap bidang datar permukaan bumi. Sudut yang dibentuk oleh kutub utara jarum kompas dengan bidang datar disebut inklinasi (Gambar 11.16). Alat yang digunakan untuk menentukan besar inklinasi disebut inklinator.

MEDAN MAGNET DI SEKITAR ARUS LISTRIK

Tujuan belajarmu adalah dapat:

menjelaskan sifat medan magnet di sekitar kawat berarus listrik.

Arah penyimpangan magnet jarum kompas ketika berada di sekitar arus listrik dapat diterang- kan sebagai berikut.

Anggaplah arus listrik terletak di antara telapak tangan kanan dan magnet jarum kompas. Jika arus listrik searah dengan keempat jari, kutub utara magnet jarum akan me- nyimpang sesuai ibu jari. Cara penentuan arah sim- pangan magnet jarum kom- pas demikian disebutkai- dah telapak tangan kanan.

Medan magnet di sekitar kawat berarus listrik ditemukan secara tidak sengaja oleh Hans Christian Oersted (1770-1851), ke- tika akan memberikan kuliah bagi mahasiswa. Oersted menemukan bahwa di sekitar kawat berarus listrik magnet jarum kompas akan bergerak (menyimpang). Penyimpangan magnet jarum kompas akan makin besar jika kuat arus listrik yang mengalir melalui kawat diperbesar. Arah penyimpangan jarum kompas bergantung arah arus listrik yang mengalir dalam kawat.

Gejala itu terjadi jika kawat dialiri arus listrik. Jika kawat tidak dialiri arus listrik, medan magnet tidak terjadi sehingga magnet jarum kompas tidak bereaksi.

Perubahan arah arus listrik ternyata juga memengaruhi perubahan arah penyimpangan jarum kompas. Perubahan jarum kompas menunjukkan perubahan arah medan magnet.

Bagaimanakah menentukan arah medan magnet di sekitar penghantar berarus listrik?

Jika arah arus listrik mengalir sejajar dengan jarum kompas dari kutub selatan menuju kutub utara, kutub utara jarum kompas menyimpang berlawanan dengan arah putaran jarum jam.

Jika arah arus listrik mengalir sejajar dengan jarum kompas dari kutub utara menuju kutub selatan, kutub utara jarum kompas menyimpang searah dengan arah putaran jarum jam.

1117

1. Pola Medan Magnet di Sekitar Arus Listrik

Gejala penyimpangan magnet jarum di sekitar arus listrik membuktikan bahwa arus listrik dapat menghasilkan medan magnet.

Arah medan magnet yang ditimbulkan arus listrik dapat diterangkan melalui aturan atau kaidah berikut. Anggaplah suatu peng- hantar berarus listrik digenggam tangan kanan. Perhatikan Gambar

11.18. Jika arus listrik searah ibu jari, arah medan magnet yang timbul searah keempat jari yang menggenggam. Kaidah yang demikian disebut kaidah tangan kanan menggenggam.

1118

Tugas Individu !

Rancanglah suatu kegiatan untuk membuktikan adanya medan magnet di sekitar penghantar berarus listrik. Peralatan yang tersedia antara lain serbuk besi, penghantar, kertas, dan baterai. Gambarlah sketsa model kegiatanmu.

2. Solenoida

11201

Pada uraian sebelumnya kamu sudah mempelajari medan magnet yang timbul pada penghantar lurus. Bagaimana jika peng- hantarnya melingkar dengan jumlah banyak? Sebuah penghantar melingkar jika dialiri arus listrik akan menghasilkan medan listrik seperti Gambar 11.19. Penghantar melingkar yang berbentuk kumparan panjang disebut solenoida. Medan magnet yang ditimbulkan oleh solenoida akan lebih besar daripada yang ditimbulkan oleh sebuah penghantar melingkar, apalagi oleh sebuah penghantar lurus. Tahukah kamu mengapa demikian?

Jika solenoida dialiri arus listrik maka akan menghasilkan medan magnet. Medan magnet yang dihasilkan solenoida berarus listrik bergantung pada kuat arus listrik dan banyaknya kumparan. Garis-garis gaya magnet pada solenoida merupakan gabungan dari garis-garis gaya magnet dari kawat melingkar. Gabungan itu akan menghasilkan medan magnet yang sama dengan medan magnet sebuah magnet batang yang panjang. Kumparan seolah-olah mempunyai dua kutub, yaitu ujung yang satu merupakan kutub utara dan ujung kumparan yang lain merupakan kutub selatan.

Latihan !

1. Apakah pengaruh arah arus listrik terhadap arah medan magnet?

2. Bagaimanakah pola medan magnet dari kawat berarus listrik?

3. Di manakah titik yang memiliki medan magnet paling kuat pada kawat me lingkar berarus listrik?

lat1

4. Tentukan letak kutub utara dan selatan

ELEKTROMAGNET

Tujuan belajarmu adalah dapat:

menjelaskan cara kerja elektromagnet dan penerapannya dalam bebera- pa teknologi.

Masih ingatkah kamu cara membuat magnet menggunakan arus listrik? Di bagian ini kamu akan lebih mendalami tentang magnet listrik tersebut. Magnet listrik atau elektromagnet sangat erat hubungannya dengan solenoida.

Medan magnet yang dihasilkan oleh solenoida berarus listrik tidak terlalu kuat. Agar medan magnet yang dihasilkan solenoida berarus listrik bertambah kuat, maka di dalamnya harus dimasukkan inti besi lunak. Besi lunak merupakan besi yang tidak dapat dibuat menjadi magnet tetap. Solenoida berarus listrik dan dilengkapi de- ngan besi lunak itulah yang dikenal sebagai elektromagnet.

1. Faktor yang Memengaruhi Kekuatan Elektromagnet

Apakah yang memengaruhi besar medan magnet yang dihasilkan elektromagnet? Sebuah elektromagnet terdiri atas tiga unsur penting, yaitu jumlah lilitan, kuat arus, dan inti besi.

Makin banyak lilitan dan makin besar arus listrik yang mengalir, makin besar medan magnet yang dihasilkan. Selain itu medan magnet yang dihasilkan elektromagnet juga tergantung pada inti besi yang digunakan. Makin besar (panjang) inti besi yang berada dalam solenoida, makin besar medan magnet yang dihasilkan elektromagnet. Jadi kemagnetan sebuah elektromagnet bergantung besar kuat arus yang mengalir, jumlah lilitan, dan besar inti besi yang digunakan.

Elektromagnet menghasilkan medan magnet yang sama dengan medan magnet sebuah magnet batang yang panjang. Elektromagnet juga mempunyai dua kutub yaitu ujung yang satu merupakan kutub utara dan ujung kumparan yang lain merupakan kutub selatan.

Dibandingkan magnet biasa, elektromagnet banyak mempu- nyai keunggulan. Karena itulah elektromagnet banyak digunakan dalam kehidupan sehari-hari. Beberapa keunggulan elektromagnet antara lain sebagai berikut.

a. Kemagnetannya dapat diubah-ubah dari mulai yang kecil sampai yang besar dengan cara mengubah salah satu atau ketiga dari kuat arus listrik, jumlah lilitan dan ukuran inti besi.

b. Sifat kemagnetannya mudah ditimbulkan dan dihilangkan dengan cara memutus dan menghubungkan arus listrik meng- gunakan sakelar.

c . Dapat dibuat berbagai bentuk dan ukuran sesuai dengan kebutuhan yang dikehendaki.

d. Letak kutubnya dapat diubah-ubah dengan cara mengubah arah arus listrik.

Kekuatan elektromagnet akan bertambah, jika:

a. arus yang melalui kumparan bertambah,

b. jumlah lilitan diperbanyak,

c. memperbesar/memperpanjang inti besi.


Latihan

1. Apakah yang dimaksud elektromagnet?

2. Sebutkan tiga cara memperbesar medan magnet yang dihasilkan elektromagnet.

2. Kegunaan Elektromagnet

Beberapa peralatan sehari-hari yang menggunakan elektromagnet antara lain seperti berikut.

a. Bel listrik

Bel listrik terdiri atas dua elektromagnet dengan setiap solenoida dililitkan pada arah yang berlawanan (perhatikan Gambar11.21).

11211

Apabila sakelar ditekan, arus listrik akan mengalir melalui solenoida. Teras besi akan menjadi magnet dan menarik kepingan besi lentur dan pengetuk akan memukul bel (lonceng) menghasilkan bunyi. Tarikan kepingan besi lentur oleh elektromagnet akan me- misahkan titik sentuh dan sekrup pengatur yang berfungsi sebagai interuptor. Arus listrik akan putus dan teras besi hilang kemag- netannya. Kepingan besi lentur akan kembali ke kedudukan semula. Teras besi akan menjadi magnet dan menarik kepingan besi lentur dan pengetuk akan memukul bel (lonceng) menghasilkan bunyi kembali. Proses ini berulang-ulang sangat cepat dan bunyi lonceng terus terdengar.

b. Relai

Relai berfungsi sebagai sakelar untuk menghubungkan atau memutuskan arus listrik yang besar pada rangkaian lain dengan menggunakan arus listrik yang kecil. Ketika sakelar S ditutup arus listrik kecil mengalir pada kumparan. Teras besi akan menjadi magnet (elektromagnet) dan menarik kepingan besi lentur. Titik sentuh C akan tertutup, menyebabkan rangkaian lain yang mem- bawa arus besar akan tersambung. Apabila sakelar S dibuka, teras besi hilang kemagnetannya, keping besi lentur kembali ke kedudukan semula. Titik sentuh C terbuka dan rangkaian listrik lain terputus.

c. Telepon

Telepon terdiri dari dua bagian yaitu bagian pengirim (mikrofon) dan bagian penerima (telepon). Prinsip kerja bagian mikrofon adalah mengubah gelombang suara menjadi getaran- getaran listrik. Pada bagian pengirim ketika seseorang berbicara akan menggetarkan diafragma aluminium. Serbuk-serbuk karbon yang terdapat pada mikrofon akan tertekan dan menyebabkan hambatan serbuk karbon mengecil. Getaran yang berupa sinyal listrik akan mengalir melalui rangkaian listrik.

Prinsip kerja bagian telepon adalah mengubah sinyal listrik menjadi gelombang bunyi. Sinyal listrik yang dihasilkan mikrofon diterima oleh pesawat telepon. Apabila sinyal listrik berubah-ubah mengalir pada kumparan, teras besi akan menjadi elektromagnet yang kekuatannya berubah-ubah (perhatikan Gambar 11.23). Dia- fragma besi lentur di hadapan elektromagnet akan ditarik dengan gaya yang berubah-ubah. Hal ini menyebabkan diafragma bergetar. Getaran diafragma memengaruhi udara di hadapannya, sehingga udara akan dimampatkan dan direnggangkan. Tekanan bunyi yang dihasilkan sesuai dengan tekanan bunyi yang dikirim melalui mi- krofon.

d. Katrol Listrik

Elektromagnet yang besar digunakan untuk mengangkat sampah logam yang tidak terpakai. Apabila arus dihidupkan katrol listrik akan menarik sampah besi dan memindahkan ke tempat yang dikehendaki. Apabila arus listrik dimatikan, sampah besi akan jatuh. Dengan cara ini sampah yang berupa tembaga, aluminium, dan seng dapat dipisahkan dengan besi.

1124

Kebaikan katrol listrik adalah:

a. mampu mengangkat sampah besi dalam jumlah besar

b. dapat mengangkat/memindahkan bongkahan besi yang tanpa rantai

c . membantu memisahkan antara logam feromagnetik dan bukan feromagnetik.

Latihan

1. Mengapa menambah jumlah lilitan dapat menghasilkan kemagnetan yang lebih besar?

2. Bagaimana cara penentuan elektromagnet?


GAYA LORENTZ

Di depan telah dijelaskan bahwa kawat berarus listrik menimbulkan medan magnet. Apakah yang terjadi jika kawat berarus listrik berada dalam medan magnet tetap?

Interaksi medan magnet dari kawat berarus dengan medan magnet tetap akan menghasilkan gaya magnet. Pada peristiwa ini terdapat hubungan antara arus listrik, medan magnet tetap, dan gaya magnet. Hubungan besaran-besaran itu ditemukan oleh fisikawan Belanda, Hendrik Anton Lorentz (1853-1928). Dalam penyelidikan- nya Lorentz menyimpulkan bahwa besar gaya yang ditimbulkan berbanding lurus dengan kuat arus, kuat medan magnet, panjang kawat dan sudut yang dibentuk arah arus listrik dengan arah medan magnet. Untuk menghargai jasa penemuan H.A. Lorentz, gaya tersebut disebut gaya Lorentz. Apabila arah arus listrik tegak lurus dengan arah medan magnet, besar gaya Lorentz dirumuskan.

Dengan: F = B . I . l

F = gaya Lorentz satuan newton (N)

B = kuat medan magnet satuan tesla (T).

l = panjang kawat satuan meter (m)

I = kuat arus listrik satuan ampere (A)

Berdasarkan rumus di atas tampak bahwa apabila arah arus listrik tegak lurus dengan arah medan magnet, besar gaya Lorentz bergantung pada panjang kawat, kuat arus listrik, dan kuat medan magnet. Gaya Lorentz yang ditimbulkan makin besar, jika panjang kawat, kuat arus listrik, dan kuat medan magnet makin besar. Kawat panjangnya 2 m berada tegak lurus dalam medan magnet 20 T. Jika kuat arus listrik yang mengalir 400 mA, berapakah besar gaya Lorentz yang dialami kawat?

Penyelesaian:

Diketahui: l = 2 m

B = 20 T

I = 400 mA = 0,4 A

Ditanya: F = … ?

Jawab: F = l . I . B

= 2 . 0,4 .20

= 16 N

Arah gaya Lorentz bergantung pada arah arus listrik dan arah

medan magnet. Untuk menentukan arah gaya Lorentz digunakan kaidah atau aturan tangan kanan. Caranya rentangkan ketiga jari yaitu ibu jari, jari telunjuk, dan jari tengah sedemikian hingga membentuk sudut 90 derajat (saling tegak lurus). Jika ibu jari menunjukan arah arus listrik (I) dan jari telunjuk menunjukkan arah medan magnet (B) maka arah gaya Lorentz searah jari tengah (F). Dalam bentuk tiga dimensi, arah yang tegak lurus mendekati pembaca diberi simbol. Adapun arah yang tegak lurus menjauhi pembaca diberi simbol.

1126

Gaya Lorentz yang ditimbulkan kawat berarus listrik dalam medan magnet dapat dimanfaatkan untuk membuat alat yang dapat mengubah energi listrik menjadi energi gerak. Alat yang menerapkan gaya Lorentz adalah motor listrik dan alat-alat ukur listrik. Motor listrik banyak dijumpai pada tape recorder, pompa air listrik, dan komputer. Adapun, contoh alat ukur listrik yaitu amperemeter, voltmeter, dan ohmmeter.

Latihan !

Sebutkan tiga cara memperbesar gaya Lorentz yang ditimbulkan kawat berarus dalam medan magnet !

Apabila masih ada materi yang belum kamu pahami, tanyakan pada gurumu. Setelah paham, maka pelajarilah bab selanjutnya.

Istilah – istilah penting

interuptor : pemutus arus.

kemagnetan : gejala fisika pada bahan yang memiliki kemampuan menimbulkan medan magnet.

kutub magnet : kedua ujung besi (magnet) yang paling kuat daya tariknya.

magnet elementer : bagian terkecil dari magnet yang masih mempunyai sifat magnet.

motor listrik : alat untuk mengubah energi listrik menjadi energi gerak.

solenoida : kumparan yang panjang.

relai : alat yang bekerja atas dasar penggunaan arus yang kecil untuk menghubungkan atau memutuskan arus listrik yang besar.

Kerjakan soal-soal berikut di buku kerjamu

1. Sebutkan sifat-sifat dua kutub magnet yang saling berdekatan.

2. Sebutkan tiga faktor yang memengaruhi besar medan magnet yang dihasilkan oleh elektromagnet.

3. Sebutkan tiga faktor yang memengaruhi besarnya gaya Lorentz.

4. Sebuah kawat panjangnya 10 m berada tegak lurus dalam medan magnet sebesar 60 tesla. Jika kuat arus listrik yang mengalir pada kawat 2 A, tentukan be- sarnya gaya Lorentz.

5. Ke manakah arah medan magnet, bila arah gaya Lorentz dan arah arus ditunjukkan gambar berikut?

lat2

Senin, 30 Agustus 2010

AMES CLERK MAXWELL

1831-1879

Fisikawan Inggris kesohor James Clerk Maxwell ini terkenal melalui formulasi empat pernyataan yang menjelaskan hukum dasar listrik dan magnit.

Kedua bidang ini sebelum Maxwell sudah diselidiki lama sekali dan sudah sama diketahui ada kaitan antar keduanya. Namun, walau pelbagai hukum listrik dan kemagnitan sudah diketemukan dan mengandung kebenaran dalam beberapa segi, sebelum Maxwell, tak ada satu pun dari hukum-hukum itu yang merupakan satu teori terpadu. Dalam dia punya empat perangkat hukum yang dirumuskan secara ringkas (tetapi punya bobot tinggi), Maxwell berhasil menjabarkan secara tepat perilaku dan saling hubungan antara medan listrik dan magnit. Dengan begitu dia mengubah sejumlah besar fenomena menjadi satu teori tunggal yang dapat dijadikan pegangan. Pendapat Maxwell telah jadi anutan pada abad sebelumnya secara luas baik di sektor teori maupun dalam praktek ilmu pengetahuan.

Nilai terpenting dari, pendapat Maxwell yang baru itu adalah: banyak persamaan umum yang bisa terjadi dalam semua keadaan. Semua hukum-hukum listrik dan magnit yang sudah ada sebelumnya dapat dianggap berasal dari pendapat Maxwell, begitu pula sejumlah besar hukum lainnya, yang dulunya merupakan teori yang tidak dikenal. Dari pendapat Maxwell ini dapat diperlihatkan betapa pergoyangan bolak-balik bidang elektromagnetik secara periodik adalah sesuatu hal yang bisa terjadi. Gerak bolak-balik seperti pendulum ini disebut gelombang elektromagnetik, yang bilamana sekali digerakkan akan menyebar terus hingga angkasa luar. Dari pendapat-pendapat ini mampu menunjukkan bahwa kecepatan gelombang elektromagnetik itu mencapai sekitar 300.000 kilometer (186.000 mil) per detik. Maxwell mengetahui bahwa ini sama dengan ukuran kecepatan cahaya. Dari sudut ini dia dengan tepat mengambil kesimpulan bahwa cahaya itu sendiri terdiri dari gelombang elektromagnetik.

Jadi, pendapat Maxwell bukan semata merupakan hukum dasar dari kelistrikan dan kemagnitan, tetapi juga sekaligus merupakan hukum dasar optik. Sesungguhnya, semua hukum terdahulu yang dikenal sebagai hukum optik dapat dikaitkan dengan pendapatnya, juga banyak fakta dan hubungan dengan hal-hal yang dulunya tidak terungkapkan.

Cahaya yang tampak oleh mata bukan semata jenis yang memungkinkan radiasi elektromagnetik. Pendapat Maxwell menunjukkan bahwa gelombang elektromagnetik lain, berbeda dengan cahaya yang tampak oleh mata dalam dia punya panjang gelombang dan frekuensi, bisa saja ada. Kesimpulan teoritis ini secara mengagumkan diperkuat oleh Heinrich Hertz, yang sanggup menghasilkan dan menemui kedua gelombang yang tampak oleh mata yang diramalkan oleh Maxwell itu. Beberapa tahun kemudian Guglielmo Marconi memperagakan bahwa gelombang yang tak terlihat mata itu dapat digunakan buat komunikasi tanpa kawat sehingga menjelmalah apa yang namanya radio itu. Kini, kita gunakan juga buat televisi, sinar X, sinar gamma, sinar infra, sinar ultraviolet adalah contoh-contoh dari radiasi elektromagnetik. Semuanya bisa dipelajari lewat hasil pemikiran Maxwell.

Meski kemasyhuran Maxwell yang paling menonjol terletak pada sumbangan pikirannya yang dahsyat di bidang elektromagnetik dan optik, dia juga memberi sumbangan penting bagi dunia ilmu pengetahuan di segi lain termasuk teori-teori astronomi dan termodinamika (penyelidikan ihwal panas). Salah satu minat khususnya adalah teori kinetik tentang gas. Maxwell menyadari bahwa tidak semua molekul gas bergerak pada kecepatan sama. Sebagian lebih lambat, sebagian lebih cepat, dan sebagian lagi dengan kecepatan yang luar biasa. Maxwell mencoba rumus khusus menunjukkan bagian terkecil molekul bergerak (dalam suhu tertentu) pada kecepatan yang tertentu pula. Rumus ini disebut "penyebaran Maxwell," merupakan rumus yang paling luas terpakai dalam rumus-rumus ilmiah, dan mengandung makna dan manfaat penting pada tiap cabang fisika.

Maxwell dilahirkan di Edinburgh, Skotlandia, tahun 1831. Dia teramatlah dini berkembang: pada usia lima belas tahun dia sudah mampu mempersembahkan sebuah kertas kerja ilmiah kepada "Edinburgh Royal Society." Dia masuk Universitas Edinburgh dan tamat Universitas Cambridge. Kawin, tetapi tak beranak. Maxwell umumnya dianggap teoritikus terbesar di bidang fisika dalam seluruh masa antara Newton dan Einstein. Kariernya yang cemerlang berakhir terlampau cepat karena dia meninggal dunia tahun 1879 akibat serangan kanker, tak berapa lama sehabis merayakan ulang tahunnya yang ke-48.

NICOLAUS COPERNICUS

NICOLAUS COPERNICUS
1473-1543

Astronom (ahli perbintangan) berkebangsaan Polandia yang bernama Nicolaus Copernicus (nama Polandianya: Mikolaj Kopernik), dilahirkan tahun 1473 di kota Torun di tepi sungai Vistula, Polandia. Dia berasal dari keluarga berada. Sebagai anak muda belia, Copernicus belajar di Universitas Cracow, selaku murid yang menaruh minat besar terhadap ihwal ilmu perbintangan. Pada usia dua puluhan dia pergi melawat ke Italia, belajar kedokteran dan hukum di Universitas Bologna dan Padua yang kemudian dapat gelar Doktor dalam hukum gerejani dari Universitas Ferrara. Copernicus menghabiskan sebagian besar waktunya tatkala dewasa selaku staf pegawai Katedral di Frauenburg (istilah Polandia: Frombork), selaku ahli hukum gerejani yang sesungguhnya Copernicus tak pernah jadi astronom profesional, kerja besarnya yang membikin namanya melangit hanyalah berkat kerja sambilan.

Selama berada di Italia, Copernicus sudah berkenalan dengan ide-ide filosof Yunani Aristarchus dari Samos (abad ke-13 SM). Filosof ini berpendapat bahwa bumi dan planit-planit lain berputar mengitari matahari. Copernicus jadi yakin atas kebenaran hipotesa "heliocentris" ini, dan tatkala dia menginjak usia empat puluh tahun dia mulai mengedarkan buah tulisannya diantara teman-temannya dalam bentuk tulisan-tulisan ringkas, mengedepankan cikal bakal gagasannya sendiri tentang masalah itu. Copernicus memerlukan waktu bertahun-tahun melakukan pengamatan, perhitungan cermat yang diperlukan untuk penyusunan buku besarnya De Revolutionibus Orbium Coelestium (Tentang Revolusi Bulatan Benda-benda Langit), yang melukiskan teorinya secara terperinci dan mengedepankan pembuktian-pembuktiannya.

Di tahun 1533, tatkala usianya menginjak enam puluh tahun, Copernicus mengirim berkas catatan-catatan ceramahnya ke Roma. Di situ dia mengemukakan prinsip-prinsip pokok teorinya tanpa mengakibatkan ketidaksetujuan Paus. Baru tatkala umurnya sudah mendekati tujuh puluhan, Copernicus memutuskan penerbitan bukunya, dan baru tepat pada saat meninggalnya dia dikirimi buku cetakan pertamanya dari si penerbit. Ini tanggal 24 Mei 1543.

Dalam buku itu Copernicus dengan tepat mengatakan bahwa bumi berputar pada porosnya, bahwa bulan berputar mengelilingi matahari dan bumi, serta planet-planet lain semuanya berputar mengelilingi matahari. Tapi, seperti halnya para pendahulunya, dia membuat perhitungan yang serampangan mengenai skala peredaran planet mengelilingi matahari. Juga, dia membuat kekeliruan besar karena dia yakin betul bahwa orbit mengandung lingkaran-lingkaran. Jadi, bukan saja teori ini ruwet secara matematik, tapi juga tidak betul. Meski begitu, bukunya lekas mendapat perhatian besar. Para astronom lain pun tergugah, terutama astronom berkebangsaan Denmark, Tycho Brahe, yang melakukan pengamatan lebih teliti dan tepat terhadap gerakan-gerakan planet. Dari data-data hasil pengamatan inilah yang membikin Johannes Kepler akhirnya mampu merumuskan hukum-hukum gerak planet yang tepat.


Sistem alam semesta Copernicus

Meski Aristarchus lebih dari tujuh belas abad lamanya sebelum Copernicus sudah mengemukakan persoalan-persoalan menyangkut hipotesa peredaran benda-benda langit, adalah layak menganggap Copernicuslah orang yang memperoleh penghargaan besar. Sebab, betapapun Aristarchus sudah mengedepankan pelbagai masalah yang mengandung inspirasi, namun dia tak pernah merumuskan teori yang cukup terperinci sehingga punya manfaat dari kacamata ilmiah. Tatkala Copernicus menggarap perhitungan matematik hipotesa-hipotesa secara terperinci, dia berhasil mengubahnya menjadi teori ilmiah yang punya arti dan guna. Dapat digunakan untuk dugaan-dugaan, dapat dibuktikan dengan pengamatan astronomis, dapat bermanfaat di banding lain-lain teori yang terdahulu bahwa dunialah yang jadi sentral ruang angkasa.

Jelaslah dengan demikian, teori Copernicus telah merevolusionerkan konsep kita tentang angkasa luar dan sekaligus sudah merombak pandangan filosofis kita. Namun, dalam hal penilaian mengenai arti penting Copernicus, haruslah diingat bahwa astronomi tidaklah mempunyai jangkauan jauh dalam penggunaan praktis sehari-hari seperti halnya fisika kimia dan biologi. Sebab, hakekatnya orang bisa membikin peralatan televisi, mobil, atau pabrik kimia modern tanpa mesti secuwil pun menggunakan teori Copernicus. (Sebaliknya, orang tidak bakal bisa membikin benda-benda itu tanpa menggunakan buah pikiran Faraday, Maxwell, Lavosier atau Newton).

Tetapi, jika semata-mata kita mengarahkan perhatian hanya semata-mata kepada pengaruh langsung Copernicus di bidang teknologi, kita akan kehilangan arti penting Copernicus yang sesungguhnya. Buku Copernicus punya makna yang tampaknya tak memungkinkan baik Galileo maupun Kepler menyelesaikan kerja ilmiahnya. Kesemua mereka adalah pendahulu-pendahulu yang penting dan menentukan bagi Newton, dan penemuan merekalah yang membikin kemungkinan bagi Newton merumuskan hukum-hukum gerak dan gaya beratnya. Secara historis, penerbitan De Revolutionobus Orbium Coelestium merupakan titik tolak astronomi modern. Lebih dari itu, merupakan titik tolak pengetahuan modern.

Alessandro Giuseppe Antonio Anastasio Volta


Alessandro Giuseppe Antonio Anastasio Volta (18 Februari 1745 - 5 Maret 1827) adalah seorang fisikawan Italia. Ia terutama dikenal karena mengembangkan baterai pada tahun 1800. Ia melanjutkan pekerjaan Luigi Galvani dan membuktikan bahwa teori Galvani yaitu efek kejutan kaki kodok adalah salah. Secara fakta, efek ini muncul akibat 2 logam tak sejenis dari pisau bedah Galvani. Berdasarkan pendapat ini, Volta berhasil menciptakan Baterai Volta (Voltac Pile). Atas jasanya, satuan beda potensial listrik dinamakan Volt.

Minggu, 29 Agustus 2010

TUPOKSI PENGELOLA LABORATORIUM IPA SMP NEGERI 3 BOBOTSARI

  1. KEPALA SEKOLAH
  • Memberi tugas kepada personil-personil yang menjadi tanggung jawabnya
  • Memberi bimbingan, motivasi, pemantauan, dan evaluasi kinerja petugas
  • Memotivasi guru ipa untuk kegiatan laboratorium
  • Menyediakan dana operasional kegiatan laboratorium

  1. WAKIL KEPALA URUSAN KURIKULUM
  • Membantu tugas kepala sekolah dalam bidang kegiatan pembelajaran di laboratorium

  1. WAKIL KEPALA URUSAN SARANA PRASARANA
  • Membantu tugas kepala Sekolah dalam bidang sarana dan prasarana laboratorium

  1. KOORDINATOR LABORATORIUM
  • Bertanggung jawab atas administrasi laboratorium
  • Bertanggung jawab atas kelancaran kegiatan laboratorium
  • Mengusulkan kepada kepala sekolah tentang pengadaan alat dan bahan
  • Mengkoordinasikan guru-guru IPA dalam penggunaan laboratorium

  1. PENANGGUNG JAWAB LAB. IPA FISIKA
  • Bertanggung jawab atas administrasi laboratorium IPA Fisika
  • Bertanggung jawab atas kelancaran kegiatan laboratorium IPA Fisika
  • Mengusulkan kepada koordinator laboratorium tentang pengadaan alat dan bahan
  • Mengkoordinasikan guru-guru IPA Fisika dalam penggunaan laboratorium

  1. PENANGGUNG JAWAB LAB. IPA BIOLOGI
  • Bertanggung jawab atas administrasi laboratorium IPA Biologi
  • Bertanggung jawab atas kelancaran kegiatan laboratorium IPA Biologi
  • Mengusulkan kepada koordinator laboratorium tentang pengadaan alat dan bahan
  • Mengkoordinasikan guru-guru IPA Biologi dalam penggunaan laboratorium

  1. LABORAN IPA / TEKNISI
  • Mengerjakan tugas-tugas administrasi laboratorium
  • Menyimpan semua alat dan bahan secara rapi sesuai dengan jenisnya
  • Mempersiapkan dan menyimpan kembali alat dan bahan yang telah digunakan
  • Merawat semua alat/bahan/fasilitas laboratorium
  • Bertanggung jawab atas kebersihan alat dan ruang laboratorium beserta perlengkapan lainnya

TATA TERTIB LABORATORIUM SMP NEGERI 3 BOBOTSARI

A. TAHAP PERSIAPAN

  1. Siswa masuk atau keluar ruang Laboratorium harus seizin guru/pengelola Laboratorium.
  2. Mempersiapkan diri baik secara penguasaan materi dan kegiatan yang akan dilakukan dengan membaca terlebih dahulu petunjuk praktikum.
  3. Menyiapkan Alat dan Bahan sesuai dengan keperluan Praktikum.
  4. Jika ada alat yang rusak / pecah hendaknya segera dilaporkan kepada guru atau petugas Laboratorium.

B. TAHAP PELAKSANAAN

  1. Melakukan kegiatan sesuai petunjuk praktikum, bekerjalah dengan baik dan benar jangan bekerja menurut kehendaknya sendiri.
  2. Bila dalam melakukan pekerjaan ada hal-hal yang tidak jelas dan tidak dimengerti harus segera bertanya kepada guru / pengelola Laboratorium.
  3. Melakukan kegiatan penuh tanggungjawab, aktivitas dan berjiwa kompetitif.

C. TAHAP PENUTUP

  1. Setelah selesai melakukan kegiatan praktikum, alat-alat / bahan harus segera dikembalikan ke tempat semula dalam keadaan bersih dan baik.
  2. Jika ada alat yang rusak / pecah karena sengaja hendaknya segera dilaporkan kepada guru atau petugas Laboratorium dan harus mengganti.
  3. Ketika akan meninggalkan Laboratorium, meja dan kursi harus tertata rapi dan bersih.
  4. Membuat laporan Praktikum sesuai ketentuan.

Bobotsari, 1 Juli 2010
Kepala Sekolah



Eko Budi Santosa,S.Pd
NIP. 19670907 199303 1 008

VISI & MISI LABORATORIUM IPA SMP NEGERI 3 BOBOTSARI

VISI

Menjadikan laboratorium IPA SMP Negeri 3 Bobotsari sebagai sarana kegiatan peserta didik dan guru dalam proses pembelajaran melalui praktikum dan/ atau penelitian untuk menghasilkan lulusan yang bermutu.

MISI

1. Menyelenggarakan administrasi laboratorium IPA yang baik dan tertib pada setiap tahun pelajaran.

2. Pengadaan sarana dan prasarana laboratorium IPA secara kontinyu untuk meningkatkan layanan praktikum IPA, baik dalam proses pembelajaran maupun penelitian.

3. Menyelenggarakan kegiatan praktikum IPA Fisika, Biologi dan Kimia minimal 5 (lima) kegiatan praktikum pada setiap tahun pelajaran.

4. Menyelenggarakan layanan penelitian dan pengembangan karya ilmiah bagi peserta didik, guru, dan pengguna lain.

Jumat, 27 Agustus 2010

Pada Mulanya Alam Sebesar Kacang

AHLI fisika-matematika Stephen Hawking dan Neil Turok dari Universitas Cambridge, pernah mengemukakan teori mengenai asal-usul alam semesta.

Menurut Hawking, alam semesta pada mulanya berupa sebuah benda sebesar kacang (kacang hijau) yang ada (existed) sepersekian detik sebelum terjadinya Dentuman Besar (Big Bang) 12 miliar tahun silam.

Teori terakhir sebelum ini, termasuk salah satu teori Hawking sendiri, menyebutkan alam semesta pada mulanya berupa sebuah benda sangat padat --berupa titik, jadi satu dimensi-- yang mengembang atau mengalami ekspansi menjadi jagat raya mahaluas seperti yang kita diami sekarang ini setelah Dentuman Besar terjadi 12 miliar tahun silam.

Unsur baru dalam teori alam semesta mirip kacang dari Hawking-Turok adalah "pada mulanya" itu berupa sebuah "benda tiga dimensi," bukan "benda titik satu dimensi." Hal ini akan memberi konsekuensi panjang yang bersifat matematis dan filosofis pada studi fisika dan astronomi modern yang berlangsung dewasa ini.

Teori baru yang dinamakan Inflasi Terbuka itu juga memostulatkan, alam semesta akan terus mengembang ke "tak-berhinggaan" yang menjelaskan bagaimana materi dahulu diciptakan. Ia dapat pula memecahkan persamaan gravitasi Einstein yang terkenal mahasulit.

Turok yakin, teorinya akan diterima oleh komunitas sains. "Ini merupakan jawaban terbaik bagi setiap orang yang mempelajari bagaimana alam semesta berawal," katanya.

Hawking dan Turok yakin beberapa saat -- walau pada "waktu" itu belum ada apa yang dinamakan sebagai "ruang" dan "waktu" -- sebelum Dentuman Besar, alam semesta sebesar kacang itu tertunda mengembang di kehampaan-tak-mengenal-waktu yang sedang mengalami masa-masa ekspansi cepat. Ekspansi sudah berlangsung beberapa saat dengan sangat singkat sebelum ledakan (Dentuman Besar) terjadi.

"Anda pasti berpikir, tidaklah mungkin mendapatkan alam semesta tanpa batas (infinite) dari sebuah benda yang terbatas (finite)," kata Turok.

"Kedengarannya paradoks, tapi teori kami ini tidak hanya mencakup terbentuknya alam semesta mirip kacang yang kecil ini, tapi keseluruhan masa depan alam semesta," tambahnya.

Hawking dan Turok merumuskan teori mereka dengan melakukan akrobat matematika terhadap hukum-hukum fisika ketimbang melakukan pengamatan "langsung" terhadap bintang-bintang dan benda-benda alam semesta.

Sepertriliun Detik, Alam Tercipta

Kalau selama ini terbentuknya alam semesta hanya terbukti secara teori, kini astronom menemukan jejak-jejak baru awal mula alam semesta. Hasil penelitian melalui pengamatan (observasi) menunjukkan bahwa alam semesta terbentuk kurang dari sepertriliun detik saja.

Astronom NASA merilis hasil temuan tentang adanya radiasi gelombang mikro (microwave) purba yang tercipta saat awal alam semesta. Gelombang microwave purba ini terus bergerak yang seolah membenarkan teori inflasionernya alam semesta.

Bukti baru itu menunjukkan bahwa alam semesta tiba-tiba tumbuh dari ukuran submikroskopis ke ukuran astronomis dalam rentang waktu kurang dari kedipan mata saja.

"Membesarnya alam semesta secara luar biasa ini terjadi kurang dari sepertriliun detik," kata fisikawan Universitas Johns Hopkins, Charles Bennett.

Bukti akan keberadaan gelombang microwave purba ini ditemukan oleh salah satu satelit NASA, yaitu Wilkinson Microwave Anisotropy Probe (WMAP). Wahana antariksa ini diluncurkan NASA pada 2001. Setelah mengangkasa selama tiga tahun di ketinggian 1,6 juta kilometer dari permukaan bumi, WMAP menemukan bukti-bukti ilmiah itu.

Satelit angkasa ini dilengkapi dengan dua teleskop yang dapat menangkap gelombang microwave. Rencananya, WMAP yang mengelilingi bumi setiap enam kali dalam sebulan ini akan bertugas menangkap gelombang microwave purba hingga 2009.

Bukti adanya gelombang purba diketahui setelah astronom menganalisis variasi spektrum cahaya di angkasa. Deteksi WMAP menunjukkan bahwa cahaya itu dihasilkan saat alam semesta terbentuk 1,37 miliar tahun yang lalu. Gelombang ini terlihat dalam ukuran microwave dengan daya yang lemah.

Cahaya lemah ini muncul pertama kali saat alam semesta berumur 300.000 tahun. Pada waktu itu, radiasi mikroskopis masih memancar pada suhu mendekati nol dan temperatur yang membuat semua gerak atom terhenti. Cahaya purba ini membantu astronom memahami perbedaan temperatur di alam semesta muda.

Astronom mengatakan, perbedaan temperatur ini menunjukkan pola terbentuknya bintang, galaksi, dan planet.

Bagaimana astronom bisa membedakan gelombang mikro itu berasal dari awal terbentuknya alam semesta? Melalui sensor canggih WMAP, cahaya lemah dari awal alam semesta itu dipolarisasi dan disaring, sehingga diketahui fluktuasi kecerlangan cahayanya yang tersebar saat Big Bang terjadi. Dari sinilah astronom bisa mengetahui mana yang termasuk cahaya dari awal alam semesta.

"Ini sungguh membuat saya takjub, kita bisa menceritakan bahwa segalanya terjadi dalam sepertriliun detik itu," ujar Bennett.

Temuan WMAP ini membenarkan perkiraan para astronom tentang terbentuknya alam semesta sekitar 1,37 miliar tahun lampau. Akan tetapi, temuan itu merevisi perkiraan astronom sebelumnya tentang lahirnya bintang. Kalau semua astronom memperkirakan bintang terbentuk 200 juta tahun setelah Big Bang, hasil deteksi WMAP menunjukkan bintang lahir 400 juta tahun setelah dentuman besar itu.

Selain membuktikan akan kebenaran teori inflasioner bahwa alam semesta itu bergerak atau melakukan ekspansi, analisis terhadap cahaya yang ditangkap WMAP itu juga mengungkap tentang keberadaan energi gelap (dark energy).

Teori inflasioner dikemukakan pertama kali oleh astronom yang juga fisikawan Amerika, Alan Guth, pada 1979. "Ini menjadi suatu kemenangan bagi teori Guth setelah hampir 25 tahun kemudian kita memperoleh gambaran detil tentang inflasioner ini," kata kosmolog Paul Davies dari Universitas Macquarie.

Astronom semula hanya memperkirakan keberadaan dark energy ini secara teori. Namun, hasil observasi WMAP membenarkan akan adanya energi gelap tersebut. Dark energy adalah energi yang sampai saat ini belum diketahui persis apa komposisinya. Tapi yang pasti, dark energy mengisi hampir 74 persen ruang kosong di alam semesta.

Dalam teori inflasioner dinyatakan bahwa pada saat dentuman besar terjadi, alam semesta berada dalam ukuran mikroskopis. Namun, tiga peristiwa telah mengubahnya menjadi berukuran astronomis, yaitu terjadi fluktuasi temperatur yang luar biasa tingginya, ledakan yang mengubah energi menjadi materi, dan perluasan atau ekspansi sangat cepat yang akhirnya memungkinkan bintang dan galaksi terbentuk.***

Sumber: Kompas
Foto: NASA

Strategi Pembelajaran IPA

Beberapa pendekatan yang dianjurkan untuk digunakan dalam pembelajaran IPA diantaranya adalah sebagai berikut.

1. Pendekatan Inkuiri

Pembelajaran IPA berbasis inkuiri dideskripsikan dengan mengajak siswa dalam kegiatan yang akan mengembangkan pengetahuan dan pemahaman konsep-konsep IPA sebagaimana para saintis mempelajari dunia alamiah.

Trowbridge, et al. (1973) mengajukan tiga tahap pembelajaran berbasis inkuiri. Tahap pertama adalah belajar diskoveri, yaitu guru menyusun masalah dan proses tetapi memberi kesempatan siswa untuk mengidentifikasi hasil alterna-tif. Tahap kedua inkuiri terbimbing (guided inquiry), yaitu guru me-ngajukan masalah dan siswa menentukan penyelesaian dan prosesnya. Tahap ketiga, adalah inkuiri terbuka (open inquiry), yaitu guru hanya memberikan konteks masalah sedangkan siswa mengindentifikasi dan memecahkannya.

Menurut NRC (1996) pembelajaran berbasis inkuiri meliputi kegiatan observasi, mengajukan pertanyaan, memeriksa buku-buku dan sumber-sumber lain untuk melihat informasi yang ada, merencanakan penyelidikan, me-rangkum apa yang sudah diketahui dalam bukti eksperimen, menggunakan alat untuk mengumpulkan, menganalisis dan interpretasi data, mengajukan jawaban, penjelasan, prediksi, serta mengkomunikasikan hasil. Dari pandangan pedagogi, pengajaran IPA berorientasi inkuiri lebih mencerminkan model belajar konstruktivis. Belajar adalah hasil perubahan mental yang terus mene-rus sebagaimana kita membuat makna dari pengalaman kita.

Menurut NSTA & AETS (1998) jantungnya inkuiri adalah kemampuan mengajukan pertanyaan dan mengidentifikasi penyelesaian masalah. Karena itu dalam pembelajaran seharusnya guru lebih banyak mengajukan pertanya-an open ended dan lebih banyak merangsang diskusi antar siswa. Keterampilan bertanya dan mendengarkan secara efektif penting untuk keberhasilan mengajar.

Selain itu inkuiri memerlukan keterampilan dalam menganalisis data dan menilai hasil untuk mendapatkan kesimpulan yang valid dan masuk akal. Siswa IPA seharusnya diberi kesempatan untuk menganalisis data selama pembekalannya. Mereka seharusnya memperoleh tingkat kecakapan yang memadai dalam mengumpulkan dan menganalisis data dalam berbagai format (terbuka dan tertutup) dan dapat menggunakan kriteria ilmiah untuk membedakan ke-simpulan yang valid dan tidak valid.

Dalam konteks inkuiri, assesmen yang dilakukan adalah berbasis kelas dengan harapan dapat mengambil pandangan yang luas dari pengalaman belajar siswa. Assesmen dalam pembelajaran berbasis inkuiri berbeda dari as-sesmen tradisional (NRC, 2000). Untuk memahami kemampuan siswa dalam berinkuiri dan memahami prosesnya dapat dilakukan baik berdasarkan pada analisis kinerja di dalam kelas maupun pada hasil kerja mereka. Kemampuan siswa yang seharusnya dinilai adalah kemampuan dalam mengajukan perta-nyaan yang dapat diteliti, merencanakan investigasi, melaksanakan rencana penelitiannya, mengembangkan penjelasan yang mungkin, menggunakan data sebagai bukti untuk menjelaskan atau untuk menolak penjelasan, dan laporan penelitiannya (NRC, 2000).

Pada saat siswa melakukan kegiatan inkuiri guru melakukan observasi untuk setiap kinerja siswa, seperti presentasi siswa di kelas, interaksi dengan teman, penggunaan komputer, penggunaan alat-alat laboratorium. Guru juga mempunyai hasil kerja siswa secara individual meliputi draft pertanyaan penelitian, kritik dari siswa-siswa lain, dan jurnal siswa. Observasi kinerja siswa dan hasilnya adalah sumber data yang kaya untuk guru membuat inferensi tentang setiap pemahaman siswa tentang inkuiri ilmiahnya (NRC, 1996).

2. Pendekatan Salingtemas

Untuk mewujudkan sekolah sebagai bagian dari masyarakat dan lingkungan, pembelajaran IPA dikembangkan dengan pendekatan sains, lingkungan, teknologi dan masyarakat (salingtemas). Dalam proses pembelajarannya, IPA tidak hanya mempelajari konsep-konsep tetapi juga diperkenalkan pada aspek teknologi dan bagaimana teknologi itu berperan di masyarakat serta bagaimana akibatnya pada lingkungan.

Pembelajaran sains dengan pendekatan yang mencakup aspek teknologi dan masyarakat mempunyai beberapa perbedaan jika dibandingkan dengan cara konvensional. Perbedaan tersebut meliputi: kaitan dan aplikasi bahan pelajaran, kreativitas, sikap, proses, dan konsep pengetahuan. Dengan mengkaitkan serta mengaplikasikan bahan pelajaran sains ke teknologi dan masyara-kat, diharapkan siswa dapat menghubungkan materi yang dipelajari dengan kehidupan sehari-hari, serta perkembangan teknologi dan relevansinya. De-ngan pengkaitan dan pengaplikasian tersebut kreativitas siswa untuk lebih banyak bertanya dan mengidentifikasi kemungkinan penyebab dan efek dari hasil observasi makin meningkat. Selain itu sikap siswa dalam bentuk kesadaran akan pentingnya mempelajari sains untuk menyelesaikan masalah yang dihadapi melalui proses sains yang benar juga meningkat (Poedjiadi, 2000).

3. Pendekatan Pemecahan Masalah

Menurut The National Science Teachers Association (NSTA) tahun 1985, pemecahan masalah merupakan kemampuan yang sangat penting yang harus dikembangkan dalam pembelajaran sains. Pemecahan masalah adalah hasil aplikasi pengetahuan dan prosedur kepada suatu situasi masalah. Ada empat tingkatan dalam pemecahan masalah, yaitu: (1) definisi masalah, (2) seleksi informasi yang tepat, (3) penggabungan bagian-bagian informasi yang terpisah-pisah, dan (4) menilai pemecahan masalah.

Untuk memecahkan suatu masalah pada dasarnya diperlukan pengetahuan deklaratif, pengetahuan prosedural dan pengetahuan struktural (Gagne, 1977). Pengetahuan deklaratif adalah pengetahuan yang dapat dikomunikasikan, misalnya fakta, konsep, aturan, dan prinsip. Pengetahuan prosedural menggambarkan tahap penampilan seseorang dalam menyelesaikan tugas tertentu. Pengetahuan struktural merupakan interaksi antara pengetahuan deklaratif dan pengetahuan prosedural dalam situasi memecahkan masalah.

Salah satu cara menilai pemecahan masalah dalam pendidikan sains dilakukan dengan menggunakan analisis tugas prosedural (Barba & Rubba, 1992). Hal ini didasarkan pada anggapan bahwa tahapan pemecahan masalah identik dengan tahapan memperoleh pengetahuan yang digunakan oleh para perencana sistem pengajaran. Analisis tugas prosedural (procedural task analysis atau task analysis atau task hierarchi analysis), digunakan untuk memecahkan tugas menjadi beberapa komponen, mengorganisasikan hubungan antara masing-masing tugas dan untuk menghasilkan penyelesaian tugas dengan tepat.

Cara penilaian penyelesaian masalah dalam pembelajaran dengan analisis tugas adalah: (1) dibuat prosedural tertulis, untuk menentukan pengetahuan deklaratif atau pengetahuan prosedural yang digunakan subyek dalam me-mecahkan masalah; (2) dibuat rekaman dengan audio/videotape saat subJek memecahkan masalah; (3) dibuat catatan observasi/interview, transkrip dan dicatat variabel-variabel saat pemecahan masalah dilakukan, berdasarkan tugas yang menjadi acuan; dan (4) dibuat analisisis akhir.

4. Pendekatan Keterampilan Proses Sains (KPS)

Pendekatan KPS merupakan pendekatan pembelajaran yang berorientasi kepada proses IPA, berupa keterampilan-keterampilan yang dimiliki para ilmuwan IPA untuk menghasilkan produk IPA yang satu sama lain sebenarnya tak dapat dipisahkan. Keterampilan-keterampilan yang dimaksud dijelaskan berikut ini (Rustaman, 2003).

a. Mengamati

Untuk dapat mencapai keterampilan mengamati siswa harus mengguna-kan sebanyak mungkin inderanya, yaitu indera penglihat, pembau, pen-dengar, pengecap dan peraba. Dengan demikian ia dapat mengumpulkan dan menggunakan fakta-fakta yang relevan dan memadai.

b. Menafsirkan pengamatan (interpretasi)

Untuk dapat menafsirkan pengamatan, siswa harus dapat mencatat setiap pengamatan, lalu menghubung-hubungkan pengamatannya sehingga ditemukan pola atau keteraturan dari suatu seri pengamatan.

c. Mengelompokkan (klasifikasi)

Dalam proses pengelompokan tercakup beberapa kegiatan seperti mencari perbedaan, mengontraskan ciri-ciri, mencari kesamaan, membandingkan, dan mencari dasar penggolongan.

d. Meramalkan (prediksi)

Keterampilan prediksi mencakup keterampilan mengajukan perkiraan tentang sesuatu yang belum terjadi atau belum diamati berdasarkan suatu kecenderungan atau pola yang sudah ada.

e. Berkomunikasi

Untuk mencapai keterampilan berkomunikasi, siswa harus dapat berdiskusi dalam kelompok tertentu serta menyusun dan menyampaikan laporan tentang kegiatan yang dilakukannya secara sistematis dan jelas. Siswa juga harus dapat menggambarkan data yang diperolehnya dalam bentuk grafik, tabel atau diagram.

f. Berhipotesis

Berhipotesis dapat berupa pernyataan hubungan antar variabel atau mengajukan perkiraan penyebab terjadinya sesuatu. Dengan berhipotesis terungkap cara melakukan pemecahan masalah, karena dalam rumusan hipotesis biasanya terkandung cara untuk mengujinya.

g. Merencanakan percobaan atau penelitian

Agar siswa dapat merencanakan percobaan, ia harus dapat menentukan alat dan bahan yang akan digunakan. Selanjutnya siswa harus dapat me-nentukan variabel yang dibuat tetap dan variabel yang berubah, menentukan apa yang dapat diamati, diukur atau ditulis, serta menentukan cara dan langkah-langkah kerja. Selain itu siswa juga harus dapat menentukan cara mengolah data sebagai bahan untuk menarik kesimpulan.

h. Menerapkan konsep atau prinsip

Dengan menggunakan konsep yang telah dimiliki, siswa seharusnya dapat menerapkan konsep tersebut pada peristiwa atau pengalaman baru yang terkait dengan cara menjelaskan apa yang terjadi.

i. Mengajukan pertanyaan

Pertanyaan yang diajukan dalam mengembangkan keterampilan ini dapat meminta penjelasan tentang apa, mengapa, bagaimana atau menanyakan latar belakang hipotesis. Pertanyaan tentang latar belakang hipotesis menunjukkan bahwa siswa memiliki gagasan atau perkiraan untuk menguji atau memeriksanya. Dengan mengajukan pertanyaan diharapkan siswa tidak hanya sekedar bertanya tetapi melibatkan proses berpikir.

5. Pendekatan Terpadu (Integrated Approach)

Pendekatan ini intinya adalah memadukan dua unsur pembelajaran atau lebih dalam suatu kegiatan pembelajaran dengan prinsip keterpaduan tertentu. Unsur pembelajaran yang dapat dipadukan dapat berupa konsep dan pro-ses, konsep dari satu mata pelajaran dengan konsep mata pelajaran lain, atau suatu metode dengan metode lain. Dengan prinsip keterpaduan antar unsur pembelajaran diharapkan terjadi peningkatan pemahaman ilmu yang lebih bermakna serta peningkatan wawasan dalam memandang suatu permasalahan.

Prinsip keterpaduan dapat diciptakan melalui jembatan berupa tema sentral sebagai fokus yang akan ditinjau dari beberapa konsep dalam satu atau beberapa bidang ilmu. Selain itu dapat pula melalui jembatan berupa target perilaku atau keterampilan tertentu yang dibutuhkan bukan hanya oleh satu disiplin ilmu saja.

Keragaman unsur yang dilibatkan dalam pembelajaran dapat memperkaya pengalaman belajar siswa, kegiatan belajar menjadi lebih dinamis dan menarik serta dapat meningkatkan motivasi belajar siswa. Selain itu apabila pendekatan terpadu ini dilakukan secara sistematis dapat mengefisienkan penggunaan waktu.

Albert Einstein, Ilmuwan Terbesar Abad 20


Albert Einstein (14 Maret 1879–18 April 1955) adalah seorang ilmuwan fisika teoretis yang dipandang luas sebagai ilmuwan terbesar dalam abad ke-20. Dia mengemukakan teori relativitas dan juga banyak menyumbang bagi pengembangan mekanika kuantum, mekanika statistik, dan kosmologi. Dia dianugerahi Penghargaan Nobel dalam Fisika pada tahun 1921 untuk penjelasannya tentang efek fotoelektrik dan "pengabdiannya bagi Fisika Teoretis".

Setelah teori relativitas umum dirumuskan, Einstein menjadi terkenal ke seluruh dunia, pencapaian yang tidak biasa bagi seorang ilmuwan. Di masa tuanya, keterkenalannya melampaui ketenaran semua ilmuwan dalam sejarah, dan dalam budaya populer, kata Einstein dianggap bersinonim dengan kecerdasan atau bahkan jenius. Wajahnya merupakan salah satu yang paling dikenal di seluruh dunia.

Pada tahun 1999, Einstein dinamakan "Tokoh Abad Ini" oleh majalah Time. Kepopulerannya juga membuat nama "Einstein" digunakan secara luas dalam iklan dan barang dagangan lain, dan akhirnya "Albert Einstein" didaftarkan sebagai merk dagang.

Untuk menghargainya, sebuah satuan dalam fotokimia dinamai einstein, sebuah unsur kimia dinamai einsteinium, dan sebuah asteroid dinamai 2001 Einstein.

Biografi

Masa Muda dan Universitas

Einstein dilahirkan di Ulm di Württemberg, Jerman; sekitar 100 km sebelah timur Stuttgart. Bapaknya bernama Hermann Einstein, seorang penjual ranjang bulu yang kemudian menjalani pekerjaan elektrokimia, dan ibunya bernama Pauline. Mereka menikah di Stuttgart-Bad Cannstatt. Keluarga mereka keturunan Yahudi; Albert disekolahkan di sekolah Katholik dan atas keinginan ibunya dia diberi pelajaran biola.

Pada umur lima tahun, ayahnya menunjukkan kompas kantung, dan Einstein menyadari bahwa sesuatu di ruang yang "kosong" ini beraksi terhadap jarum di kompas tersebut; dia kemudian menjelaskan pengalamannya ini sebagai salah satu saat yang paling menggugah dalam hidupnya. Meskipun dia membuat model dan alat mekanik sebagai hobi, dia dianggap sebagai pelajar yang lambat, kemungkinan disebabkan oleh dyslexia, sifat pemalu, atau karena struktur yang jarang dan tidak biasa pada otaknya (diteliti setelah kematiannya). Dia kemudian diberikan penghargaan untuk teori relativitasnya karena kelambatannya ini, dan berkata dengan berpikir dalam tentang ruang dan waktu dari anak-anak lainnya, dia mampu mengembangkan kepandaian yang lebih berkembang. Pendapat lainnya, berkembang belakangan ini, tentang perkembangan mentalnya adalah dia menderita Sindrom Asperger, sebuah kondisi yang berhubungan dengan autisme.

Einstein mulai belajar matematika pada umur dua belas tahun. Ada gosip bahwa dia gagal dalam matematika dalam jenjang pendidikannya, tetapi ini tidak benar; penggantian dalam penilaian membuat bingung pada tahun berikutnya. Dua pamannya membantu mengembangkan ketertarikannya terhadap dunia intelek pada masa akhir kanak-kanaknya dan awal remaja dengan memberikan usulan dan buku tentang sains dan matematika.

Pada tahun 1894, dikarenakan kegagalan bisnis elektrokimia ayahnya, Einstein pindah dari Munich ke Pavia, Italia (dekat kota Milan). Albert tetap tinggal untuk menyelesaikan sekolah, menyelesaikan satu semester sebelum bergabung kembali dengan keluarganya di Pavia.

Kegagalannya dalam seni liberal dalam tes masuk Eidgenössische Technische Hochschule (Institut Teknologi Swiss Federal, di Zurich) pada tahun berikutnya adalah sebuah langkah mundur dia oleh keluarganya dikirim ke Aarau, Swiss, untuk menyelesaikan sekolah menengahnya, di mana dia menerima diploma pada tahun 1896, Einstein beberapa kali mendaftar di Eidgenössische Technische Hochschule. Pada tahun berikutnya dia melepas kewarganegaraan Württemberg, dan menjadi tak bekewarganegaraan.

Pada 1898, Einstein menemui dan jatuh cinta kepada Mileva Marić, seorang Serbia yang merupakan teman kelasnya (juga teman Nikola Tesla). Pada tahun 1900, dia diberikan gelar untuk mengajar oleh Eidgenössische Technische Hochschule dan diterima sebagai warga negar Swiss pada 1901. Selama masa ini Einstein mendiskusikan ketertarikannya terhadap sains kepada teman-teman dekatnya, termasuk Mileva. Dia dan Mileva memiliki seorang putri bernama Lieserl, lahir dalam bulan Januari tahun 1902. Lieserl Einstein, pada waktu itu, dianggap tidak legal karena orang tuanya tidak menikah.

Kerja dan Gelar Doktor

Pada saat kelulusannya Einstein tidak dapat menemukan pekerjaan mengajar, keterburuannya sebagai orang muda yang mudah membuat marah professornya. Ayah seorang teman kelas menolongnya mendapatkan pekerjaan sebagai asisten teknik pemeriksa di Kantor Paten Swiss pada tahun 1902. Di sana, Einstein menilai aplikasi paten penemu untuk alat yang memerlukan pengetahuan fisika. Dia juga belajar menyadari pentingnya aplikasi dibanding dengan penjelasan yang buruk, dan belajar dari direktur bagaimana "menjelaskan dirinya secara benar". Dia kadang-kadang membetulkan desain mereka dan juga mengevaluasi kepraktisan hasil kerja mereka.

Einstein menikahi Mileva pada 6 Januari 1903. Pernikahan Einstein dengan Mileva, seorang matematikawan. Pada 14 Mei 1904, anak pertama dari pasangan ini, Hans Albert Einstein, lahir. Pada 1904, posisi Einstein di Kantor Paten Swiss menjadi tetap. Dia mendapatkan gelar doktor setelah menyerahkan thesis "Eine neue Bestimmung der Moleküldimensionen" ("On a new determination of molecular dimensions") pada tahun 1905 dari Universitas Zürich.

Di tahun yang sama dia menulis empat artikel yang memberikan dasar fisika modern, tanpa banyak sastra sains yang dapat ia tunjuk atau banyak kolega dalam sains yang dapat ia diskusikan tentang teorinya. Banyak fisikawan setuju bahwa ketiga thesis itu (tentang gerak Brownian), efek fotolistrik, dan relativitas khusus) pantas mendapat Penghargaan Nobel. Tetapi hanya thesis tentang efek fotoelektrik yang mendapatkan penghargaan tersebut. Ini adalah sebuah ironi, bukan hanya karena Einstein lebih tahu banyak tentang relativitas, tetapi juga karena efek fotoelektrik adalah sebuah fenomena kuantum, dan Einstein menjadi terbebas dari jalan dalam teori kuantum. Yang membuat thesisnya luar biasa adalah, dalam setiap kasus, Einstein dengan yakin mengambil ide dari teori fisika ke konsekuensi logis dan berhasil menjelaskan hasil eksperimen yang membingungkan para ilmuwan selama beberapa dekade.

Dia menyerahkan thesis-thesisnya ke "Annalen der Physik". Mereka biasanya ditujukan kepada "Annus Mirabilis Papers" (dari Latin: Tahun luar biasa). Persatuan Fisika Murni dan Aplikasi (IUPAP) merencanakan untuk merayakan 100 tahun publikasi pekerjaan Einstein di tahun 1905 sebagai Tahun Fisika 2005.

Gerakan Brown

Di artikel pertamanya di tahun 1905 bernama "On the Motion—Required by the Molecular Kinetic Theory of Heat—of Small Particles Suspended in a Stationary Liquid", mencakup penelitian tentang gerakan Brownian. Menggunakan teori kinetik cairan yang pada saat itu kontroversial, dia menetapkan bahwa fenomena, yang masih kurang penjelasan yang memuaskan setelah beberapa dekade setelah ia pertama kali diamati, memberikan bukti empirik (atas dasar pengamatan dan eksperimen) kenyataan pada atom. Dan juga meminjamkan keyakinan pada mekanika statistika, yang pada saat itu juga kontroversial.

Sebelum thesis ini, atom dikenal sebagai konsep yang berguna, tetapi fisikawan dan kimiawan berdebat dengan sengit apakah atom itu benar-benar suatu benda yang nyata. Diskusi statistik Einstein tentang kelakuan atom memberikan pelaku eksperimen sebuah cara untuk menghitung atom hanya dengan melihat melalui mikroskop biasa. Wilhelm Ostwald, seorang pemimpin sekolah anti-atom, kemudian memberitahu Arnold Sommerfeld bahwa ia telah berkonversi kepada penjelasan komplit Einstein tentang gerakan Brown.