Rabu, 28 November 2012
LDK Pramuka di Desa Dagan Bobotsari
Pada hari Sabtu-Minggu, tanggal 17 - 18 November 2012 Gudep 06-509 - 06.510 SMP Negeri 3 Bobotsari mengadakan kegiatan LDK Pramuka di desa Dagan Bobotsari-Purbalingga. LDK ini dikandung maksud untuk memberi bekal kepramukaan pada penggalang inti dan nantinya sebagai modal untuk mengikuti kegiatan LT III yang biasanya diadakan setiap tahun oleh Kwarcab Kab. Purbalingga.
Pembelajaran IPA Bersama Kelas IX B
Dina Kemis, 29 november 2012 KBM nang kelas IX B SMP Negeri 3 Bobotsari daripada mumet-mumet sedela maning arep tes/UAS Gasal Kang Awal gole aweh KBM IPA bocaeh kon pada dolanan Kartu Remi ning isine soal-soal sing nggo arep Ujian Nasional....kiye gambare ya ana :
dokumen pribadi
29 November 2012
Kamis, 01 November 2012
Spektrum Gelombang Elektromagnetik
Gelombang elektromagnetik yang dirumuskan oleh Maxwell ternyata terbentang dalam rentang frekuensi yang luas. Sebagai sebuah gejala gelombang, gelombang elektromagnetik dapat diidentifikasi berdasarkan frekuensi dan panjang gelombangnya. Cahaya merupakan gelombang elektromagnetik sebagaimana gelombang radio atau sinar-X. Masing-masing memiliki penggunaan yang berbeda meskipun mereka secara fisika menggambarkan gejala yang serupa, yaitu gejala gelombang, lebih khusus lagi gelombang elektromagnetik. Mereka dibedakan berdasarkan frekuensi dan panjang gelombangnya. Gambar berikut ini menunjukkan spektrum gelombang elektromagnetik.
Gelombang Radio
Tentu kamu sering menonton TV, mendengarkan radio, atau menggunakan ponsel untuk berkomunikasi, bukan? Nah, semua peralatan elektronik itu menggunakan gelombang radio sebagai perambatan sinyalnya.
Gelombang radio merupakan gelombang yang memiliki frekuensi paling kecil atau panjang gelombang paling panjang. Gelombang radio berada dalam rentang frekuensi yang luas meliputi beberapa Hz sampai gigahertz (GHz atau orde pangkat 9). Gelombang ini dihasilkan oleh alat-alat elektronik berupa rangkaian osilator (variasi dan gabungan dari komponen Resistor (R), induktor (L), dan kapasitor (C)). Oleh karena itu, gelombang radio banyak digunakan dalam sistem telekomunikasi. Siaran TV, radio, dan jaringan telepon seluler menggunakan gelombang dalam rentang gelombang radio ini.
Suatu sistem telekomunikasi yang menggunakan gelombang radio sebagai pembawa sinyal informasinya pada dasarnya terdiri dari antena pemancar dan antena penerima. Sebelum dirambatkan sebagai gelombang radio, sinyal informasi dalam berbagai bentuknya (suara pada sistem radio, suara dan data pada sistem seluler, atau suara dan gambar pada sistem TV) terlebih dahulu dimodulasi. Modulasi di sini secara sederhana dinyatakan sebagai penggabungan antara getaran listrik informasi (misalnya suara pada sistem radio) dengan gelombang pembawa frekuensi radio tersebut. Penggabungan ini menghasilkan gelombang radio termodulasi. Gelombang inilah yang dirambatkan melalui ruang dari pemancar menuju penerima.
Oleh karena itu, kita mengenal adanya istilah AM dan FM. Amplitudo modulation (AM) atau modulasi amplitudo menggabungkan getaran listrik dan getaran pembawa berupa perubahan amplitudonya. Adapun frequency modulation (FM) atau modulasi frekuensi menggabungkan getaran listrik dan getaran pembawa dalam bentuk perubahan frekuensinya.
Gelombang Mikro
Pernahkah kamu mendengar tentang alat elektronik berupa oven microwave? Atau, kamu mungkin sudah pernah menggunakannya untuk memasak? Oven microwave menggunakan sifat-sifat gelombang mikro (microwave) berupa efek panas untuk memasak. Selain itu, gelombang mikro juga digunakan dalam sistem komunikasi radar dan analisis struktur atom dan molekul.
Rentang frekuensi gelombang mikro membentang dari 3 GHz hingga 300 GHz. Frekuensi sebesar ini dihasilkan dari rangkaian osilator pada alat-alat elektronik. Gelombang mikro dapat diserap oleh suatu benda dan menimbulkan efek pemanasan pada benda tersebut. Sebuah sistem pemanas berbasis microwave dapat memanfaatkan gejala ini untuk memasak benda. Sistem semacam ini digunakan dalam oven microwave yang dapat mematangkan makanan di dalamnya secara merata dan dalam waktu singkat (cepat).
Dalam suatu sistem radar, gelombang mikro dipancarkan terus menerus ke segala arah oleh pemancar. Jika ada objek yang terkena gelombang ini, sinyal akan dipantulkan oleh objek dan diterima kembali oleh penerima. Sinyal pantulan ini akan memberikan informasi bahwa ada objek yang dekat yang akan ditampilkan oleh layar radar.
Dari waktu pemancaran sinyal sampai diterima kembali oleh radar, jarak objek yang terdeteksi dapat diketahui. Tentu kamu dapat membayangkan rumus yang dapat dipakai untuk menghitung jarak ini, bukan? Ya, jarak adalah kecepatan dikali waktu, dan karena kecepatan gelombang adalah konstan, maka dengan mengetahui waktu, jarak pun dapat dihitung. Jangan lupa bahwa pembagian dengan faktor 2 diperlukan karena sinyal menempuh jarak pulang pergi. Coba kamu tuliskan rumusnya.
Sistem radar banyak dimanfaatkan oleh pesawat terbang dan kapal selam. Dengan adanya radar, pesawat terbang dan kapal selam mampu mendeteksi keberadaan objek lain yang dekat dengan mereka. Di saat cuaca buruk di mana terjadi badai dan gangguan cuaca yang dapat mengganggu pengelihatan, keberadaan radar dapat membantu navigasi pesawat terbang untuk mengetahui arah dan posisi mereka dari tempat tujuan pendaratan.
Sinar Inframerah
Bagaimana remote TV dapat digunakan untuk mematikan atau menyalakan TV? Di sini remote menggunakan pemancar dan penerima sinar inframerah. Tahukah kamu bahwa ada ponsel yang dilengkapi dengan inframerah untuk transfer data dari atau menuju ponsel?
Sinar inframerah (infrared/IR) termasuk dalam gelombang elektromagnetik dan berada dalam rentang frekuensi 300 GHz sampai 40.000 GHz (10 pangkat 13). Sinar inframerah dihasilkan oleh proses di dalam molekul dan benda panas. Telah lama diketahui bahwa benda panas akibat aktivitas (getaran) atomik dan molekuler di dalamnya dianggap memancarkan gelombang panas dalam bentuk sinar inframerah. Oleh karena itu, sinar inframerah sering disebut radiasi panas.
Foto inframerah yang bekerja berdasarkan pancaran panas suatu objek dapat digunakan untuk membuat lukisan panas dari suatu daerah atau objek. Hasil lukisan panas dapat menggambarkan daerah mana yang panas dan tidak. Suatu lukisan panas dari satu gedung dapat digunakan untuk mengetahui daerah mana dari gedung itu yang menghasilkan panas berlebihan sehingga dapat dilakukan perbaikan-perbaikan yang diperlukan.
Dalam bidang kesehatan, pancaran panas berupa pancaran sinar inframerah dari organ-organ tubuh dapat dijadikan sebagai informasi kondisi kesehatan organ tersebut. Ini sangat bermanfaat bagi dokter dalam diagnosis dan keputusan tindakan yang sesuai buat pasien. Selain itu, pancaran panas dalam intensitas tertentu dipercaya dapat digunakan untuk proses penyembuhan penyakit seperti cacar dan encok.
Dalam teknologi elektronik, sinar inframerah telah lama digunakan sebagai media transfer data. Ponsel dan laptop dilengkapi dengan inframerah sebagai salah konektivitas untuk menghubungkan atau transfer data dari satu perangkat dengan perangkat lain. Fungsi inframerah pada ponsel dan laptop dijalankan melalui teknologi Irda (infra red data acquitition).
Cahaya atau sinar tampak
Dalam rentang spektrum gelombang elektromagnetik, cahaya atau sinar tampak hanya menempati pita sempit di atas sinar inframerah. Spektrum frekuensi sinar tampak berisi frekuensi dimana mata manusia peka terhadapnya. Frekuensi sinar tampak membentang antara 40.000 dan 80.000 GHz (10 pangkat 13) atau bersesuaian dengan panjang gelombang antara 380 dan 780 nm (10 pangkat -9). Cahaya yang kita rasakan sehari-hari berada dalam rentang frekuensi ini. cahaya juga dihasilkan melalui proses dalam skala atom dan molekul berupa pengaturan internal dalam konfigurasi elektron.
Pembahasan tentang cahaya begitu luas dan membentuk satu disiplin ilmu fisika tersendiri, yaitu optik.
Sinar Ultraviolet
Rentang frekuensi sinar ultraviolet (ultraungu) membentang dalam kisaran 80.000 GHz sampai puluhan juta GHz (10 pangkat 17).
Sinar ultraungu atau disebut juga sinar ultraviolet datang dari matahari berupa radiasi ultraviolet memiliki energi yang cukup kuat dan dapat mengionisasi atom-atom yang berada di lapisan atmosfer. Dari proses ionisasi atom-atom tersebut dihasilkan ion-ion, yaitu atom yang bermuatan listrik. Lapisan yang terdiri dari ion-ion ini membentuk lapisan khusus dalam atmosfer yang disebut ionosfer. Lapisan ionosfer yang terisi dengan atom-atom bermuatan listrik ini dapat memantulkan gelombang elektromagnetik frekuensi rendah (berada dalam spektrum frekuensi gelombang radio medium) dan dimanfaatkan dalam transmisi radio.
Karena energinya yang cukup kuat dan sifatnya yang dapat mengionisasi bahan, sinar ultraviolet tergolong sebagai radiasi yang berbahaya bagi manusia (terutama jika terpancar dalam intensitas yang besar). Untungnya, atmosfer bumi memiliki lapisan yang dapat menahan dan menyerap radiasi ultraviolet dari matahari sehingga sinar matahari yang sampai ke bumi berada dalam taraf yang tidak berbahaya. Tentu kamu sudah tahu lapisan apakah itu? ya, lapisan ozon.
Penggunaan bahan kimia baik untuk pendingin (lemari es dan AC) berupa freon maupun untuk penyemprot (parfum bentuk spray dan pilok/penyemprot cat), dapat menyebabkan kebocoran lapisan ozon. Hal ini menyebabkan sinar ultraviolet dapat menembus lapisan ozon dan sampai ke permukaan bumi, suatu hal yang sangat berbahaya buat manusia. Jika semakin banyak sinar ultraviolet yang terpapar ke permukaan bumi dan mengenai manusia, efek yang tidak diinginkan bagi manusia dan lingkungan dapat timbul.
Kanker kulit dan penyakit gangguan penglihatan seperti katarak dapat ditimbulkan dari radiasi ultraviolet yang berlebihan. Ganggang hijau sebagai sumber makanan alami dan mata rantai pertama dalam rantai makanan dapat berkurang akibat radiasi ultraviolet ini. ini dapat mengganggu keseimbangan alam dan merupakan sesuatu yang sangat merugikan buat kehidupan makhluk hidup di Bumi.
Sinar ultraviolet juga dapat dihasilkan oleh proses internal atom dan molekul. Sinar ultraviolet juga dapat dimanfaatkan dalam proses sterilisasi makanan dimana kuman dan bakteri berbahaya di dalam makanan dapat dimatikan.
Sinar-X
Sinar-X dikenal luas dalam dunia kedokteran sebagai sinar Rontgen. Dipakai untuk memeriksa organ bagian dalam tubuh. Tulang yang retak di bagian dalam tubuh dapat terlihat menggunakan sinar-X ini.
Sinar-X berada pada rentang frekuensi 300 juta GHz (10 pangkat 17) dan 50 miliar GHz (10 pangkat 19). Penemuan sinar-X dianggap sebagai salah satu penemuan penting dalam fisika. Sinar-X ditemukan oleh ahli fisika Jerman bernama Wilhelm Rontgen saat sedang mempelajari sinar katoda. Cara paling umum untuk memproduksi sinar-X adalah melalui mekanisme yang disebut bremstrahlung atau radiasi perlambatan. Mekanisme ini yang ditempuh oleh Rontgen saat pertama kali menghasilkan sinar-X. Dalam teori radiasi gelombang elektromagnetik diketahui bahwa muatan listrik yang dipercepat (atau diperlambat) akan menghasilkan gelombang elektromagnetik. Selain melalui radiasi perlambatan, sinar-X juga dihasilkan dari proses transisi internal elektron di dalam atom atau molekul.
Sinar Gamma
Sinar gamma merupakan gelombang elektromagnetik yang memiliki frekuensi (dan karenanya juga energi) yang paling besar. Sinar gamma memiliki rentang frekuensi dari 10 pangkat 18 sampai 10 pangkat 22 Hz. Sinar gamma dihasilkan melalui proses di dalam inti atom (nuklir)
.
Gelombang elektromagnetik yang dirumuskan oleh Maxwell ternyata terbentang dalam rentang frekuensi yang luas. Sebagai sebuah gejala gelombang, gelombang elektromagnetik dapat diidentifikasi berdasarkan frekuensi dan panjang gelombangnya. Cahaya merupakan gelombang elektromagnetik sebagaimana gelombang radio atau sinar-X. Masing-masing memiliki penggunaan yang berbeda meskipun mereka secara fisika menggambarkan gejala yang serupa, yaitu gejala gelombang, lebih khusus lagi gelombang elektromagnetik. Mereka dibedakan berdasarkan frekuensi dan panjang gelombangnya. Gambar berikut ini menunjukkan spektrum gelombang elektromagnetik.
Gelombang Radio
Tentu kamu sering menonton TV, mendengarkan radio, atau menggunakan ponsel untuk berkomunikasi, bukan? Nah, semua peralatan elektronik itu menggunakan gelombang radio sebagai perambatan sinyalnya.
Gelombang radio merupakan gelombang yang memiliki frekuensi paling kecil atau panjang gelombang paling panjang. Gelombang radio berada dalam rentang frekuensi yang luas meliputi beberapa Hz sampai gigahertz (GHz atau orde pangkat 9). Gelombang ini dihasilkan oleh alat-alat elektronik berupa rangkaian osilator (variasi dan gabungan dari komponen Resistor (R), induktor (L), dan kapasitor (C)). Oleh karena itu, gelombang radio banyak digunakan dalam sistem telekomunikasi. Siaran TV, radio, dan jaringan telepon seluler menggunakan gelombang dalam rentang gelombang radio ini.
Suatu sistem telekomunikasi yang menggunakan gelombang radio sebagai pembawa sinyal informasinya pada dasarnya terdiri dari antena pemancar dan antena penerima. Sebelum dirambatkan sebagai gelombang radio, sinyal informasi dalam berbagai bentuknya (suara pada sistem radio, suara dan data pada sistem seluler, atau suara dan gambar pada sistem TV) terlebih dahulu dimodulasi. Modulasi di sini secara sederhana dinyatakan sebagai penggabungan antara getaran listrik informasi (misalnya suara pada sistem radio) dengan gelombang pembawa frekuensi radio tersebut. Penggabungan ini menghasilkan gelombang radio termodulasi. Gelombang inilah yang dirambatkan melalui ruang dari pemancar menuju penerima.
Oleh karena itu, kita mengenal adanya istilah AM dan FM. Amplitudo modulation (AM) atau modulasi amplitudo menggabungkan getaran listrik dan getaran pembawa berupa perubahan amplitudonya. Adapun frequency modulation (FM) atau modulasi frekuensi menggabungkan getaran listrik dan getaran pembawa dalam bentuk perubahan frekuensinya.
Gelombang Mikro
Pernahkah kamu mendengar tentang alat elektronik berupa oven microwave? Atau, kamu mungkin sudah pernah menggunakannya untuk memasak? Oven microwave menggunakan sifat-sifat gelombang mikro (microwave) berupa efek panas untuk memasak. Selain itu, gelombang mikro juga digunakan dalam sistem komunikasi radar dan analisis struktur atom dan molekul.
Rentang frekuensi gelombang mikro membentang dari 3 GHz hingga 300 GHz. Frekuensi sebesar ini dihasilkan dari rangkaian osilator pada alat-alat elektronik. Gelombang mikro dapat diserap oleh suatu benda dan menimbulkan efek pemanasan pada benda tersebut. Sebuah sistem pemanas berbasis microwave dapat memanfaatkan gejala ini untuk memasak benda. Sistem semacam ini digunakan dalam oven microwave yang dapat mematangkan makanan di dalamnya secara merata dan dalam waktu singkat (cepat).
Dalam suatu sistem radar, gelombang mikro dipancarkan terus menerus ke segala arah oleh pemancar. Jika ada objek yang terkena gelombang ini, sinyal akan dipantulkan oleh objek dan diterima kembali oleh penerima. Sinyal pantulan ini akan memberikan informasi bahwa ada objek yang dekat yang akan ditampilkan oleh layar radar.
Dari waktu pemancaran sinyal sampai diterima kembali oleh radar, jarak objek yang terdeteksi dapat diketahui. Tentu kamu dapat membayangkan rumus yang dapat dipakai untuk menghitung jarak ini, bukan? Ya, jarak adalah kecepatan dikali waktu, dan karena kecepatan gelombang adalah konstan, maka dengan mengetahui waktu, jarak pun dapat dihitung. Jangan lupa bahwa pembagian dengan faktor 2 diperlukan karena sinyal menempuh jarak pulang pergi. Coba kamu tuliskan rumusnya.
Sistem radar banyak dimanfaatkan oleh pesawat terbang dan kapal selam. Dengan adanya radar, pesawat terbang dan kapal selam mampu mendeteksi keberadaan objek lain yang dekat dengan mereka. Di saat cuaca buruk di mana terjadi badai dan gangguan cuaca yang dapat mengganggu pengelihatan, keberadaan radar dapat membantu navigasi pesawat terbang untuk mengetahui arah dan posisi mereka dari tempat tujuan pendaratan.
Sinar Inframerah
Bagaimana remote TV dapat digunakan untuk mematikan atau menyalakan TV? Di sini remote menggunakan pemancar dan penerima sinar inframerah. Tahukah kamu bahwa ada ponsel yang dilengkapi dengan inframerah untuk transfer data dari atau menuju ponsel?
Sinar inframerah (infrared/IR) termasuk dalam gelombang elektromagnetik dan berada dalam rentang frekuensi 300 GHz sampai 40.000 GHz (10 pangkat 13). Sinar inframerah dihasilkan oleh proses di dalam molekul dan benda panas. Telah lama diketahui bahwa benda panas akibat aktivitas (getaran) atomik dan molekuler di dalamnya dianggap memancarkan gelombang panas dalam bentuk sinar inframerah. Oleh karena itu, sinar inframerah sering disebut radiasi panas.
Foto inframerah yang bekerja berdasarkan pancaran panas suatu objek dapat digunakan untuk membuat lukisan panas dari suatu daerah atau objek. Hasil lukisan panas dapat menggambarkan daerah mana yang panas dan tidak. Suatu lukisan panas dari satu gedung dapat digunakan untuk mengetahui daerah mana dari gedung itu yang menghasilkan panas berlebihan sehingga dapat dilakukan perbaikan-perbaikan yang diperlukan.
Dalam bidang kesehatan, pancaran panas berupa pancaran sinar inframerah dari organ-organ tubuh dapat dijadikan sebagai informasi kondisi kesehatan organ tersebut. Ini sangat bermanfaat bagi dokter dalam diagnosis dan keputusan tindakan yang sesuai buat pasien. Selain itu, pancaran panas dalam intensitas tertentu dipercaya dapat digunakan untuk proses penyembuhan penyakit seperti cacar dan encok.
Dalam teknologi elektronik, sinar inframerah telah lama digunakan sebagai media transfer data. Ponsel dan laptop dilengkapi dengan inframerah sebagai salah konektivitas untuk menghubungkan atau transfer data dari satu perangkat dengan perangkat lain. Fungsi inframerah pada ponsel dan laptop dijalankan melalui teknologi Irda (infra red data acquitition).
Cahaya atau sinar tampak
Dalam rentang spektrum gelombang elektromagnetik, cahaya atau sinar tampak hanya menempati pita sempit di atas sinar inframerah. Spektrum frekuensi sinar tampak berisi frekuensi dimana mata manusia peka terhadapnya. Frekuensi sinar tampak membentang antara 40.000 dan 80.000 GHz (10 pangkat 13) atau bersesuaian dengan panjang gelombang antara 380 dan 780 nm (10 pangkat -9). Cahaya yang kita rasakan sehari-hari berada dalam rentang frekuensi ini. cahaya juga dihasilkan melalui proses dalam skala atom dan molekul berupa pengaturan internal dalam konfigurasi elektron.
Pembahasan tentang cahaya begitu luas dan membentuk satu disiplin ilmu fisika tersendiri, yaitu optik.
Sinar Ultraviolet
Rentang frekuensi sinar ultraviolet (ultraungu) membentang dalam kisaran 80.000 GHz sampai puluhan juta GHz (10 pangkat 17).
Sinar ultraungu atau disebut juga sinar ultraviolet datang dari matahari berupa radiasi ultraviolet memiliki energi yang cukup kuat dan dapat mengionisasi atom-atom yang berada di lapisan atmosfer. Dari proses ionisasi atom-atom tersebut dihasilkan ion-ion, yaitu atom yang bermuatan listrik. Lapisan yang terdiri dari ion-ion ini membentuk lapisan khusus dalam atmosfer yang disebut ionosfer. Lapisan ionosfer yang terisi dengan atom-atom bermuatan listrik ini dapat memantulkan gelombang elektromagnetik frekuensi rendah (berada dalam spektrum frekuensi gelombang radio medium) dan dimanfaatkan dalam transmisi radio.
Karena energinya yang cukup kuat dan sifatnya yang dapat mengionisasi bahan, sinar ultraviolet tergolong sebagai radiasi yang berbahaya bagi manusia (terutama jika terpancar dalam intensitas yang besar). Untungnya, atmosfer bumi memiliki lapisan yang dapat menahan dan menyerap radiasi ultraviolet dari matahari sehingga sinar matahari yang sampai ke bumi berada dalam taraf yang tidak berbahaya. Tentu kamu sudah tahu lapisan apakah itu? ya, lapisan ozon.
Penggunaan bahan kimia baik untuk pendingin (lemari es dan AC) berupa freon maupun untuk penyemprot (parfum bentuk spray dan pilok/penyemprot cat), dapat menyebabkan kebocoran lapisan ozon. Hal ini menyebabkan sinar ultraviolet dapat menembus lapisan ozon dan sampai ke permukaan bumi, suatu hal yang sangat berbahaya buat manusia. Jika semakin banyak sinar ultraviolet yang terpapar ke permukaan bumi dan mengenai manusia, efek yang tidak diinginkan bagi manusia dan lingkungan dapat timbul.
Kanker kulit dan penyakit gangguan penglihatan seperti katarak dapat ditimbulkan dari radiasi ultraviolet yang berlebihan. Ganggang hijau sebagai sumber makanan alami dan mata rantai pertama dalam rantai makanan dapat berkurang akibat radiasi ultraviolet ini. ini dapat mengganggu keseimbangan alam dan merupakan sesuatu yang sangat merugikan buat kehidupan makhluk hidup di Bumi.
Sinar ultraviolet juga dapat dihasilkan oleh proses internal atom dan molekul. Sinar ultraviolet juga dapat dimanfaatkan dalam proses sterilisasi makanan dimana kuman dan bakteri berbahaya di dalam makanan dapat dimatikan.
Sinar-X
Sinar-X dikenal luas dalam dunia kedokteran sebagai sinar Rontgen. Dipakai untuk memeriksa organ bagian dalam tubuh. Tulang yang retak di bagian dalam tubuh dapat terlihat menggunakan sinar-X ini.
Sinar-X berada pada rentang frekuensi 300 juta GHz (10 pangkat 17) dan 50 miliar GHz (10 pangkat 19). Penemuan sinar-X dianggap sebagai salah satu penemuan penting dalam fisika. Sinar-X ditemukan oleh ahli fisika Jerman bernama Wilhelm Rontgen saat sedang mempelajari sinar katoda. Cara paling umum untuk memproduksi sinar-X adalah melalui mekanisme yang disebut bremstrahlung atau radiasi perlambatan. Mekanisme ini yang ditempuh oleh Rontgen saat pertama kali menghasilkan sinar-X. Dalam teori radiasi gelombang elektromagnetik diketahui bahwa muatan listrik yang dipercepat (atau diperlambat) akan menghasilkan gelombang elektromagnetik. Selain melalui radiasi perlambatan, sinar-X juga dihasilkan dari proses transisi internal elektron di dalam atom atau molekul.
Sinar Gamma
Sinar gamma merupakan gelombang elektromagnetik yang memiliki frekuensi (dan karenanya juga energi) yang paling besar. Sinar gamma memiliki rentang frekuensi dari 10 pangkat 18 sampai 10 pangkat 22 Hz. Sinar gamma dihasilkan melalui proses di dalam inti atom (nuklir)
.
.
Termodinamika
Termodinamika adalah kajian tentang kalor (panas) yang berpindah. Dalam termodinamika kamu akan banyak membahas tentang sistem dan lingkungan. Kumpulan benda-benda yang sedang ditinjau disebut sistem, sedangkan semua yang berada di sekeliling (di luar) sistem disebut lingkungan.
Usaha Luar
Usaha luar dilakukan oleh sistem, jika kalor ditambahkan (dipanaskan) atau kalor dikurangi (didinginkan) terhadap sistem. Jika kalor diterapkan kepada gas yang menyebabkan perubahan volume gas, usaha luar akan dilakukan oleh gas tersebut. Usaha yang dilakukan oleh gas ketika volume berubah dari volume awal V1 menjadi volume akhir V2 pada tekanan p konstan dinyatakan sebagai hasil kali tekanan dengan perubahan volumenya.
W = p∆V= p(V2 – V1)
Secara umum, usaha dapat dinyatakan sebagai integral tekanan terhadap perubahan volume yang ditulis sebagai
Tekanan dan volume dapat diplot dalam grafik p – V. jika perubahan tekanan dan volume gas dinyatakan dalam bentuk grafik p – V, usaha yang dilakukan gas merupakan luas daerah di bawah grafik p – V. hal ini sesuai dengan operasi integral yang ekuivalen dengan luas daerah di bawah grafik.
Gas dikatakan melakukan usaha apabila volume gas bertambah besar (atau mengembang) dan V2 > V1. sebaliknya, gas dikatakan menerima usaha (atau usaha dilakukan terhadap gas) apabila volume gas mengecil atau V2 < V1 dan usaha gas bernilai negatif.
Energi Dalam
Suatu gas yang berada dalam suhu tertentu dikatakan memiliki energi dalam. Energi dalam gas berkaitan dengan suhu gas tersebut dan merupakan sifat mikroskopik gas tersebut. Meskipun gas tidak melakukan atau menerima usaha, gas tersebut dapat memiliki energi yang tidak tampak tetapi terkandung dalam gas tersebut yang hanya dapat ditinjau secara mikroskopik.
Berdasarkan teori kinetik gas, gas terdiri atas partikel-partikel yang berada dalam keadaan gerak yang acak. Gerakan partikel ini disebabkan energi kinetik rata-rata dari seluruh partikel yang bergerak. Energi kinetik ini berkaitan dengan suhu mutlak gas. Jadi, energi dalam dapat ditinjau sebagai jumlah keseluruhan energi kinetik dan potensial yang terkandung dan dimiliki oleh partikel-partikel di dalam gas tersebut dalam skala mikroskopik. Dan, energi dalam gas sebanding dengan suhu mutlak gas. Oleh karena itu, perubahan suhu gas akan menyebabkan perubahan energi dalam gas. Secara matematis, perubahan energi dalam gas dinyatakan sebagai
untuk gas monoatomik
untuk gas diatomik
Dimana ∆U adalah perubahan energi dalam gas, n adalah jumlah mol gas,R adalah konstanta umum gas (R = 8,31 J mol−1 K−1, dan ∆T adalah perubahan suhu gas (dalam kelvin).
Hukum I Termodinamika
Jika kalor diberikan kepada sistem, volume dan suhu sistem akan bertambah (sistem akan terlihat mengembang dan bertambah panas). Sebaliknya, jika kalor diambil dari sistem, volume dan suhu sistem akan berkurang (sistem tampak mengerut dan terasa lebih dingin). Prinsip ini merupakan hukum alam yang penting dan salah satu bentuk dari hukum kekekalan energi.
Gambar
Sistem yang mengalami perubahan volume akan melakukan usaha dan sistem yang mengalami perubahan suhu akan mengalami perubahan energi dalam. Jadi, kalor yang diberikan kepada sistem akan menyebabkan sistem melakukan usaha dan mengalami perubahan energi dalam. Prinsip ini dikenal sebagai hukum kekekalan energi dalam termodinamika atau disebut hukum I termodinamika. Secara matematis, hukum I termodinamika dituliskan sebagai
Q = W + ∆U
Dimana Q adalah kalor, W adalah usaha, dan ∆U adalah perubahan energi dalam. Secara sederhana, hukum I termodinamika dapat dinyatakan sebagai berikut.
Jika suatu benda (misalnya krupuk) dipanaskan (atau digoreng) yang berarti diberi kalor Q, benda (krupuk) akan mengembang atau bertambah volumenya yang berarti melakukan usaha W dan benda (krupuk) akan bertambah panas (coba aja dipegang, pasti panas deh!) yang berarti mengalami perubahan energi dalam ∆U.
Proses Isotermik
Suatu sistem dapat mengalami proses termodinamika dimana terjadi perubahan-perubahan di dalam sistem tersebut. Jika proses yang terjadi berlangsung dalam suhu konstan, proses ini dinamakan proses isotermik. Karena berlangsung dalam suhu konstan, tidak terjadi perubahan energi dalam (∆U = 0) dan berdasarkan hukum I termodinamika kalor yang diberikan sama dengan usaha yang dilakukan sistem (Q = W).
Proses isotermik dapat digambarkan dalam grafik p – V di bawah ini. Usaha yang dilakukan sistem dan kalor dapat dinyatakan sebagai
Dimana V2 dan V1 adalah volume akhir dan awal gas.
Proses Isokhorik
Jika gas melakukan proses termodinamika dalam volume yang konstan, gas dikatakan melakukan proses isokhorik. Karena gas berada dalam volume konstan (∆V = 0), gas tidak melakukan usaha (W = 0) dan kalor yang diberikan sama dengan perubahan energi dalamnya. Kalor di sini dapat dinyatakan sebagai kalor gas pada volume konstan QV.
QV = ∆U
Proses Isobarik
Jika gas melakukan proses termodinamika dengan menjaga tekanan tetap konstan, gas dikatakan melakukan proses isobarik. Karena gas berada dalam tekanan konstan, gas melakukan usaha (W = p∆V). Kalor di sini dapat dinyatakan sebagai kalor gas pada tekanan konstan Qp. Berdasarkan hukum I termodinamika, pada proses isobarik berlaku
Sebelumnya telah dituliskan bahwa perubahan energi dalam sama dengan kalor yang diserap gas pada volume konstan
QV =∆U
Dari sini usaha gas dapat dinyatakan sebagai
W = Qp − QV
Jadi, usaha yang dilakukan oleh gas (W) dapat dinyatakan sebagai selisih energi (kalor) yang diserap gas pada tekanan konstan (Qp) dengan energi (kalor) yang diserap gas pada volume konstan (QV).
Proses Adiabatik
Dalam proses adiabatik tidak ada kalor yang masuk (diserap) ataupun keluar (dilepaskan) oleh sistem (Q = 0). Dengan demikian, usaha yang dilakukan gas sama dengan perubahan energi dalamnya (W = ∆U).
Jika suatu sistem berisi gas yang mula-mula mempunyai tekanan dan volume masing-masing p1 dan V1 mengalami proses adiabatik sehingga tekanan dan volume gas berubah menjadi p2 dan V2, usaha yang dilakukan gas dapat dinyatakan sebagai
Dimana γ adalah konstanta yang diperoleh perbandingan kapasitas kalor molar gas pada tekanan dan volume konstan dan mempunyai nilai yang lebih besar dari 1 (γ > 1).
Proses adiabatik dapat digambarkan dalam grafik p – V dengan bentuk kurva yang mirip dengan grafik p – V pada proses isotermik namun dengan kelengkungan yang lebih curam.
Langganan:
Postingan (Atom)